【題目】如圖1,CE平分∠ACDAE平分∠BAC,∠EAC+ACE=90°

1)請判斷ABCD的位置關(guān)系并說明理由;

2)如圖2,當(dāng)∠E=90°ABCD的位置關(guān)系保持不變,移動直角頂點E,使∠MCE=ECD,當(dāng)直角頂點E點移動時,問∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說明理由;

3)如圖3P為線段AC上一定點,點Q為直線CD上一動點且ABCD的位置關(guān)系保持不變,當(dāng)點Q在射線CD上運動時(點C除外)∠CPQ+CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.

【答案】1ABCD,理由見解析;(2)∠BAE+MCD=90°,理由見解析;(3)∠BAC=PQC+QPC,理由見解析

【解析】

1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2EAC,∠ACD=2ACE,再由∠EAC+ACE=90°可知∠BAC+ACD=180,故可得出結(jié)論;
2)過EEFAB,根據(jù)平行線的性質(zhì)可知EFABCD,∠BAE=AEF,∠FEC=DCE,故∠BAE+ECD=90°,再由∠MCE=ECD即可得出結(jié)論;
3)根據(jù)ABCD可知∠BAC+ACD=180°,∠QPC+PQC+PCQ=180°,故∠BAC=PQC+QPC

1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2EAC,∠ACD=2ACE,
∵∠EAC+ACE=90°
∴∠BAC+ACD=180°,
ABCD;
2)∠BAE+MCD=90°
EEFAB,


ABCD
EFABCD,
∴∠BAE=AEF,∠FEC=DCE,
∵∠E=90°,
∴∠BAE+ECD=90°,
∵∠MCE=ECD,
∴∠BAE+MCD=90°
3)∵ABCD,
∴∠BAC+ACD=180°,
∵∠QPC+PQC+PCQ=180°,
∴∠BAC=PQC+QPC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將ABC沿一確定方向平移得到A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(1,2),則點A1,C1的坐標(biāo)分別是 (  )

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1) C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結(jié)論:①AD=BC;②BD、AC互相平分;四邊形ACED是菱形.其中正確的個數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ADB60°,∠CDB50°

1)若ADBCABCD,求∠ABC的度數(shù);

2)若∠A70°,請寫出圖中平行的線段,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的對角線AC,BD相交于點O.

(1)如圖1,E,G分別是OB,OC上的點,CE與DG的延長線相交于點F.若DF⊥CE,求證:OE=OG;

(2)如圖2,H是BC上的點,過點H作EH⊥BC,交線段OB于點E,連結(jié)DH交CE于點F,交OC于點G.若OE=OG,

①求證:∠ODG=∠OCE;

②當(dāng)AB=1時,求HC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程ax2+bx10a≠0)有一根為x2019,則一元二次方程ax12+bx1)=1必有一根為(  )

A.B.2020C.2019D.2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+k2+k0

1)求證:方程有兩個不相等的實數(shù)根;

2)若ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根.第三邊BC的長為5,

①若ABC是以BC為斜邊的直角三角形,求k的值.

②若ABC是等腰三角形,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,

1)請以ABBC為鄰邊用兩種不同的方法畫平行四邊形ABCD,并說明此畫法的合理性(不寫作法,保留作圖痕跡.);

2)在上述畫出的平行四邊形中,若,,,求對角線BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小天家、小亮家、學(xué)校依次在同一條筆直的公路旁(各自到公路的距離忽略不計),每天早上7點整小天都會從家出發(fā)以每分鐘60米的速度走到距他家600米的小亮家,然后兩人以小天同樣的速度準(zhǔn)時在730到校早讀.某日早上7點過,小亮在家等小天的時候突然想起今天輪到自己值日掃地了,所以就以每分鐘60米的速度先向?qū)W校走去,后面打算再和小天解釋,小天來到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考時間忽略不計),于是他就以每分鐘100米的速度去追小亮,兩人之間的距離y(米)及小亮出發(fā)的時間x(分)之間的函數(shù)關(guān)系如下圖所示.請問當(dāng)小天追上小亮?xí)r離學(xué)校還有_____米.

查看答案和解析>>

同步練習(xí)冊答案