【題目】新冠肺炎疫情在全球蔓延,造成了嚴(yán)重的人員傷亡和經(jīng)濟損失,其中一個原因是新冠肺炎病毒傳播速度非?欤粋人如果感染某種病毒,經(jīng)過了兩輪的傳播后被感染的總?cè)藬?shù)將達到64人.
(1)求這種病毒每輪傳播中一個人平均感染多少人?
(2)按照上面的傳播速度,如果傳播得不到控制,經(jīng)過三輪傳播后一共有多少人被感染?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標(biāo)為(,1),下列結(jié)論:①abc<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確的有( 。﹤.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直l1∥l2,點A、B固定在直線l2上,點C是直線11上一動點,若點E、F分別為CA、CB中點,對于下列各值:①線段EF的長;②△CEF的周長;③△CEF的面積;④∠ECF的度數(shù),其中不隨點C的移動而改變的是( 。
A.①②B.①③C.②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳某百果園店售賣贛南臍橙,已知每千克臍橙的成本價為元,在銷售臍橙的這天時間內(nèi),銷售單價(元/千克)與時間第(天)之間的函數(shù)關(guān)系式為(,且為整數(shù)),日銷售量(千克)與時間第(天)之間的函數(shù)關(guān)系式為(,且為整數(shù))
(1)請你直接寫出日銷售利潤(元)與時間第(天)之間的函數(shù)關(guān)系式;
(2)該店有多少天日銷售利潤不低于元?
(3)在實際銷售中,該店決定每銷售千克臍橙,就捐贈元給希望工程,在這天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點D,E為BC的中點,連接DE并延長交AC的延長線于點F.
(1)求證:DE是⊙O的切線;
(2)若CF=2,DF=4,求⊙O直徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在完善基礎(chǔ)設(shè)施、改善市容市貌、提升城市品質(zhì)過程中,2019年我市開展人行道改造工程,需要花崗巖地板磚鋪設(shè)人行道.現(xiàn)租用甲、乙兩種貨車運載地板磚,已知一輛甲車每次運載的重量比一輛乙車多2噸,且甲車運載16噸地板磚和乙車運載12噸地板磚所用的車輛數(shù)相同.
(1)甲、乙兩種貨車每次運載地板磚各多少噸?
(2)現(xiàn)租用甲車a輛、乙車b輛,剛好運載地板磚100噸,且a≤3b,共有多少種租車方案?
(3)在(2)中已知一輛甲車每次的運費是380元,一輛乙車每次的運費是300元,如何租用甲、乙兩種車可使得總運費最低?求出最低總運費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x﹣2的圖象分別交x、y軸于點A、B,拋物線y=x2+bx+c經(jīng)過點A、B,點P為第四象限內(nèi)拋物線上的一個動點.
(1)求此拋物線的函數(shù)解析式;
(2)過點P作PM∥y軸,分別交直線AB、x軸于點C、D,若以點P、B、C為頂點的三角形與以點A、C、D為頂點的三角形相似,求點P的坐標(biāo);
(3)當(dāng)∠PBA=2∠OAB時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
在綜合與實踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動.如 圖 1,將:矩形紙片 ABCD 沿對角線 AC 剪開,得到△ABC 和△ACD.并且量得 AB =4cm,AC=8cm.
操作發(fā)現(xiàn):
(1)將圖 1 中的△ACD 以點 A 為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)∠α,使∠α=∠BAC,得到如圖 2 所示的△AC′D,過點 C 作 AC′的平行線,與 DC'的延長線 交于點 E,則四邊形 ACEC′的形狀是 .
(2)創(chuàng)新小組將圖 1 中的△ACD 以點 A 為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使 B、 A、D 三點在同一條直線上,得到如圖 3 所示的△AC′D,連接 CC',取 CC′的中 點 F,連接 AF 并延長至點 G,使 FG=AF,連接 CG、C′G,得到四邊形 ACGC′, 發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.
實踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進行如下操作:將△ABC 沿著 BD 方向平移,使點 B 與點 A 重合,此時 A 點平移至 A'點,A'C 與 BC′相交于點 H, 如圖 4 所示,連接 CC′,試求 tan∠C′CH 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,M是CD邊上一動點(不與D點重合),點D與點E關(guān)于AM所在的直線對稱,連接AE,ME,延長CB到點F,使得BF=DM,連接EF,AF.
(1)依題意補全圖1;
(2)若DM=1,求線段EF的長;
(3)當(dāng)點M在CD邊上運動時,能使△AEF為等腰三角形,直接寫出此時tan∠DAM的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com