【題目】如圖,若二次函數(shù)圖象的對(duì)稱軸為軸交于點(diǎn)C,與x軸交于點(diǎn)點(diǎn)給出下列結(jié)論:①二次函數(shù)的最大值為;②;③;④當(dāng)時(shí),;⑤其中正確的個(gè)數(shù)是(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

【答案】C

【解析】

根據(jù)拋物線的對(duì)稱軸為以及開口方向即可判斷①;根據(jù)拋物線與x軸交于點(diǎn)B-1,0),即可判斷②;根據(jù)拋物線與x軸有兩個(gè)交點(diǎn),即可判斷③;根據(jù)拋物線的對(duì)稱性求出點(diǎn)A的坐標(biāo),再由圖象即可判斷④;根據(jù)對(duì)稱軸得到b=-2a,結(jié)合a-b+c=0以及a0即可判斷⑤.

解:∵拋物線的對(duì)稱軸為,且拋物線開口向下,

∴當(dāng)x=1時(shí),y=a+b+c最大,故①正確;

∵拋物線與x軸交于點(diǎn)B-1,0),

∴當(dāng)x=-1時(shí),y=a-b+c=0,故②錯(cuò)誤;

∵由圖象可知,拋物線與x軸有兩個(gè)交點(diǎn),

,故③錯(cuò)誤;

∵拋物線與x軸交于點(diǎn)B-1,0)且對(duì)稱軸為x=1,

∴拋物線與x軸的另一個(gè)交點(diǎn)A3,0),

由圖象可知,當(dāng)y0時(shí),,故④正確;

∵對(duì)稱軸為直線x=1,

,則b=-2a,

a-b+c=0,

3a+c=0,

又∵開口向下,a0,

3a+c-a=-a0,故⑤正確;

∴正確的有:①④⑤,共3個(gè),

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形 ABCD 中,ADBCABBC,對(duì)角線 ACBD 交于點(diǎn) O,BD 平分∠ABC,過點(diǎn) D DEBC BC 的延長(zhǎng)線于點(diǎn) E.連接 OE

1)求證:四邊形 ABCD 是菱形;

2)若 tanDBC= ,AB= ,求線段 OE 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,∠D=30°,ABAD

1)在AD邊上求作一點(diǎn)P,使點(diǎn)P到邊AB,BC的距離相等;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)

2)在(1)的條件下,連接BP,若AB=2,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊長(zhǎng)為,點(diǎn)在對(duì)角線(點(diǎn)在點(diǎn)的左側(cè)),且的最小值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查學(xué)生對(duì)垃圾分類及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:

成績(jī)x

學(xué)校

4

11

13

10

2

6

3

15

14

2

(說明:成績(jī)80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)

b.甲校成績(jī)?cè)?/span>這一組的是:

70 70 70 71 72 73 73 73 74 75 76 77 78

c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:

學(xué)校

平均分

中位數(shù)

眾數(shù)

74.2

n

85

73.5

76

84

根據(jù)以上信息,回答下列問題:

1)寫出表中n的值;

2)在此次測(cè)試中,某學(xué)生的成績(jī)是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填),理由是__________;

3)假設(shè)乙校800名學(xué)生都參加此次測(cè)試,估計(jì)成績(jī)優(yōu)秀的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長(zhǎng)CE,BA交于點(diǎn)F,連接ACDF

(1)求證:四邊形ACDF是平行四邊形;

(2)當(dāng)CF平分∠BCD時(shí),寫出BCCD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的周長(zhǎng)為22m,對(duì)角線AC、BD交于點(diǎn)O,過點(diǎn)OAC垂直的直線交邊AD于點(diǎn)E,則△CDE的周長(zhǎng)為( 。

A. 8cmB. 9cmC. 10cmD. 11cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線與直線交于兩點(diǎn),且兩點(diǎn)之間的拋物線上總有兩個(gè)縱坐標(biāo)相等的點(diǎn).

1)求證:;

2)過軸的垂線,交直線,,且當(dāng),三點(diǎn)共線時(shí),軸.

①求的值:

②對(duì)于每個(gè)給定的實(shí)數(shù),以為直徑的圓與直線總有公共點(diǎn),求的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課上,王老師出示一道數(shù)學(xué)題目:“在平面直角坐標(biāo)系中,當(dāng)為何值時(shí),拋物線與直線段唯一公共點(diǎn)或有兩個(gè)公共點(diǎn)?”某學(xué)習(xí)小組經(jīng)探究得到以下四個(gè)結(jié)論:

①當(dāng)時(shí),有唯一公共點(diǎn);

②若為整數(shù),則僅當(dāng)的值為4567時(shí),才有唯一公共點(diǎn);

③若為整數(shù),則當(dāng)的值為123時(shí),有兩個(gè)公共點(diǎn);

④當(dāng)時(shí),有兩個(gè)公共點(diǎn).其中正確的結(jié)論有(

A.①②④B.①②③C.①③D.①④

查看答案和解析>>

同步練習(xí)冊(cè)答案