【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線BC下方拋物線上一點(diǎn),過點(diǎn)D作y軸的平行線,與直線BC相交于點(diǎn)E

(1)求A、B的坐標(biāo);
(2)求直線BC的解析式;
(3)當(dāng)線段DE的長度最大時(shí),求點(diǎn)D的坐標(biāo).

【答案】
(1)解:當(dāng)y=0時(shí),x2﹣3x+ =0,解得x1= ,x2=

∴A( ,0),B( ,0)


(2)解:當(dāng)x=0,則y=x2﹣3x+ = ,

∴C點(diǎn)坐標(biāo)為(0, ),

設(shè)直線BC的解析式為y=kx+b,根據(jù)題意得 ,解得 ,

∴直線BC的解析式為:y=﹣ x+


(3)解:設(shè)點(diǎn)D的橫坐標(biāo)為m,則縱坐標(biāo)為(m,m2﹣3m+ ),則E點(diǎn)的坐標(biāo)為(m,﹣ m+ ),

DE=﹣ m+ ﹣(m2﹣3m+ )=﹣m2+ m,

∵DE=﹣(m﹣ 2+

∴m= 時(shí),DE的長最大,

∴D點(diǎn)的坐標(biāo)為( ,﹣


【解析】(1)通過解方程x2﹣3x+ =0可確定A點(diǎn)和B點(diǎn)坐標(biāo);(2)先求出C點(diǎn)坐標(biāo),然后利用待定系數(shù)法求直線BC的解析式;(3)設(shè)點(diǎn)D的橫坐標(biāo)為m,則縱坐標(biāo)為(m,m2﹣3m+ ),則E點(diǎn)的坐標(biāo)為(m,﹣ m+ ),則可利用m表示出DE,然后利用二次函數(shù)的性質(zhì)求出m,從而可得到D點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的例題

解方程

解:(1)當(dāng)x≥0時(shí),

原方程化為x2 – x –2=0,

解得:x1=2,x2= - 1(不合題意,舍去)

2)當(dāng)x0時(shí),

原方程化為x2 + x –2=0

解得:x1=1,(不合題意,舍去)x2= -2

∴原方程的根是x1=2, x2= - 2

3)請(qǐng)參照例題解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AOB是一條直線,∠1=2,3=4,AOFBOF=90°.

(1)AOC的補(bǔ)角是_____

(2)____是∠AOC的余角;

(3)COF的補(bǔ)角是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c滿足(a)20.

(1)a,b,c的值.

(2)a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成,求出該三角形的周長;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.
(1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)a、b、c在數(shù)軸上對(duì)應(yīng)的點(diǎn)如圖所示,則下列結(jié)論正確的是( 。

A. c+b>a+b B. cb<ab C. ﹣c+a>﹣b+a D. ac>ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中,有一道群羊逐草的問題,大意是:牧童甲在草原上放羊,乙牽著一只羊來,并問甲:你的羊群有100只嗎?甲答:如果在這群羊里加上同樣的一群,再加上半群,四分之一群,再加上你的一只,就是100只.問牧童甲趕著多少只羊?若設(shè)這群羊有x只,則下列方程中,正確的是( 。

A. (1++)x=100+1 B. x+x+x+x=100﹣1 C. (1++)x=100﹣1 D. x+x+x+x=100+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意設(shè)未知數(shù),并列出方程(不必求解).

(1)有兩個(gè)工程隊(duì),甲隊(duì)人數(shù)30名,乙隊(duì)人數(shù)10名,問怎樣調(diào)整兩隊(duì)的人數(shù),才能使甲隊(duì)的人數(shù)是乙隊(duì)人數(shù)的7倍.

(2)有一個(gè)班的同學(xué)準(zhǔn)備去劃船,租了若干條船,他們計(jì)算了一下,如果比原計(jì)劃多租1條船,那么正好每條船坐6人;如果比原計(jì)劃少租1條船,那么正好每條船坐9人.問這個(gè)班共有多少名同學(xué)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC=2C=90°,ADABC的角平分線,DEAB,垂足為E,AD的垂直平分線交AB于點(diǎn)E,則DEF的面積為______

查看答案和解析>>

同步練習(xí)冊(cè)答案