如圖,點(diǎn)是半圓的半徑上的動(dòng)點(diǎn),作于.點(diǎn)是半圓上位于左側(cè)的點(diǎn),連結(jié)交線(xiàn)段于,且.
(1) 求證:是⊙O的切線(xiàn).
(2) 若⊙O的半徑為,,設(shè).
①求關(guān)于的函數(shù)關(guān)系式.
②當(dāng)時(shí),求的值.
(1)證明見(jiàn)解析;(2)①y=x2+144(0≤x≤4),②.
解析試題分析:(1)要證PD是⊙O的切線(xiàn)只要證明∠PDO=90°即可;
(2)①分別用含有x,y的式子,表示OP2和PD2這樣便可得到y(tǒng)關(guān)于x的函數(shù)關(guān)系式;
②已知x的值,則可以根據(jù)關(guān)系式求得PD的值,已PC的值且PD=PE,從而可得到EC,BE的值,這樣便可求得tanB的值.
試題解析:(1)證明:連接OD.
∵OB=OD,
∴∠OBD=∠ODB.
∵PD=PE,
∴∠PDE=∠PED.
∠PDO=∠PDE+∠ODE
=∠PED+∠OBD
=∠BEC+∠OBD
=90°,
∴PD⊥OD.
∴PD是⊙O的切線(xiàn).
(2)①連接OP.
在Rt△POC中,
OP2=OC2+PC2=x2+192.
在Rt△PDO中,
PD2=OP2-OD2=x2+144.
∴y=x2+144(0≤x≤4).
②當(dāng)x=時(shí),y=147,
∴PD=7,
∴EC=,
∵CB=3,
∴在Rt△ECB中,tanB=.
考點(diǎn): 1.二次函數(shù)綜合題;2.切線(xiàn)的判定;3.解直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①,在□ABCD中,對(duì)角線(xiàn)AC⊥AB,BC=10,tan∠B=2.點(diǎn)E是BC邊上的動(dòng)點(diǎn),過(guò)點(diǎn)E作EF⊥BC于點(diǎn)E,交折線(xiàn)AB-AD于點(diǎn)F,以EF為邊在其右側(cè)作正方形EFGH,使EH邊落在射線(xiàn)BC上.點(diǎn)E從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度在BC邊上運(yùn)動(dòng),當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),點(diǎn)E停止運(yùn)動(dòng),設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t()秒.
(1)□ABCD的面積為 ;當(dāng)t= 秒時(shí),點(diǎn)F與點(diǎn)A重合;
(2)點(diǎn)E在運(yùn)動(dòng)過(guò)程中,連接正方形EFGH的對(duì)角線(xiàn)EG,得△EHG,設(shè)△EHG與△ABC的重疊部分面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式以及對(duì)應(yīng)的自變量t的取值范圍;
(3)作點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)Bˊ,連接CBˊ交AD邊于點(diǎn)M(如圖②),當(dāng)點(diǎn)F在AD邊上時(shí),EF與對(duì)角線(xiàn)AC交于點(diǎn)N,連接MN得△MNC.是否存在時(shí)間t,使△MNC為等腰三角形?若存在,請(qǐng)求出使△MNC為等腰三角形的時(shí)間t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖(1),直線(xiàn)與x軸交于點(diǎn)A、與y軸交于點(diǎn)D,以AD為腰,以x軸為底作等腰梯形ABCD(AB>CD),且等腰梯形的面積是8,拋物線(xiàn)經(jīng)過(guò)等腰梯形的四個(gè)頂點(diǎn).
圖(1)
(1) 求拋物線(xiàn)的解析式;
(2) 如圖(2)若點(diǎn)P為BC上的—個(gè)動(dòng)點(diǎn)(與B、C不重合),以P為圓心,BP長(zhǎng)為半徑作圓,與軸的另一個(gè)交點(diǎn)為E,作EF⊥AD,垂足為F,請(qǐng)判斷EF與⊙P的位置關(guān)系,并給以證明;
圖(2)
(3) 在(2)的條件下,是否存在點(diǎn)P,使⊙P與y軸相切,如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,某種新型導(dǎo)彈從地面發(fā)射點(diǎn)L處發(fā)射,在初始豎直加速飛行階段,導(dǎo)彈上升的高度y(km)與飛行時(shí)間x(s)之間的關(guān)系式為y=x2+x(0≤x≤10).發(fā)射3 s后,導(dǎo)彈到達(dá)A點(diǎn),此時(shí)位于與L同一水面的R處雷達(dá)站測(cè)得AR的距離是2 km,再過(guò)3 s后,導(dǎo)彈到達(dá)B點(diǎn).
(1)求發(fā)射點(diǎn)L與雷達(dá)站R之間的距離;
(2)當(dāng)導(dǎo)彈到達(dá)B點(diǎn)時(shí),求雷達(dá)站測(cè)得的仰角(即∠BRL)的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)A(1,2)和B(-2,5),試求出兩個(gè)二次函數(shù),使它們的圖象都經(jīng)過(guò)A、B兩點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)D、E、F分別是邊AB,BC,AC的中點(diǎn),連接DE,DF,動(dòng)點(diǎn)P,Q分別從點(diǎn)A、B同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,點(diǎn)P沿AFD的方向運(yùn)動(dòng)到點(diǎn)D停止;點(diǎn)Q沿BC的方向運(yùn)動(dòng),當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,過(guò)點(diǎn)Q作BC的垂線(xiàn)交AB于點(diǎn)M,以點(diǎn)P,M,Q為頂點(diǎn)作平行四邊形PMQN.設(shè)平行四邊形邊形PMQN與矩形FDEC重疊部分的面積為y(cm2)(這里規(guī)定線(xiàn)段是面積為0有幾何圖形),點(diǎn)P運(yùn)動(dòng)的時(shí)間為x(s)
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)F時(shí),CQ= cm;
(2)在點(diǎn)P從點(diǎn)F運(yùn)動(dòng)到點(diǎn)D的過(guò)程中,某一時(shí)刻,點(diǎn)P落在MQ上,求此時(shí)BQ的長(zhǎng)度;
(3)當(dāng)點(diǎn)P在線(xiàn)段FD上運(yùn)動(dòng)時(shí),求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知直線(xiàn)y=-2x+4與x軸、y軸分別相交于A、C兩點(diǎn),拋物線(xiàn)y=-2x2+bx+c (a≠0)經(jīng)過(guò)點(diǎn)A、C.
(1)求拋物線(xiàn)的解析式;
(2)設(shè)拋物線(xiàn)的頂點(diǎn)為P,在拋物線(xiàn)上存在點(diǎn)Q,使△ABQ的面積等于△APC面積的4倍.求出點(diǎn)Q的坐標(biāo);
(3)點(diǎn)M是直線(xiàn)y=-2x+4上的動(dòng)點(diǎn),過(guò)點(diǎn)M作ME垂直x軸于點(diǎn)E,在y軸(原點(diǎn)除外)上是否存在點(diǎn)F,使△MEF為等腰直角三角形? 若存在,求出點(diǎn)F的坐標(biāo)及對(duì)應(yīng)的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直角坐標(biāo)系中Rt△ABO,其頂點(diǎn)為A(0, 1)、B(2, 0)、O(0, 0),將此三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到Rt△A′B′O.
(1)一拋物線(xiàn)經(jīng)過(guò)點(diǎn)A′、B′、B,求該拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)P是在第一象限內(nèi)拋物線(xiàn)上的一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請(qǐng)求出P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫(xiě)出四邊形PB′A′B的兩條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,矩形OABC過(guò)原點(diǎn)O,且A(0,2)、C(6,0),∠AOC的平分線(xiàn)交AB于點(diǎn)D.
(1)直接寫(xiě)出點(diǎn)B的坐標(biāo);
(2)如圖,點(diǎn)P從點(diǎn)O出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿射線(xiàn)OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為秒.
①當(dāng)t為何值時(shí),△OPQ的面積等于1;
②當(dāng)t為何值時(shí),△PQB為直角三角形;
(3)已知過(guò)O、P、Q三點(diǎn)的拋物線(xiàn)解析式為y=-(x-t)2+t(t>0).問(wèn)是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在上述拋物線(xiàn)上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com