【題目】小明從家到圖書館看報然后返回,他離家的距離y與離家的時間x之間的對應關系如圖所示,如果小明在圖書館看報30分鐘,那么他離家50分鐘時離家的距離為km.

【答案】0.3
【解析】解:方法一:由題意可得, 小明從圖書館回家用的時間是:55﹣(10+30)=15分鐘,
則小明回家的速度為:0.9÷15=0.06km/min,
故他離家50分鐘時離家的距離為:0.9﹣0.06×[50﹣(10+30)]=0.3km,
所以答案是:0.3;
方法二:設小明從圖書館回家對應的函數(shù)解析式為y=kx+b,
則該函數(shù)過點(40,0.9),(55,0),
,解得, ,
即小明從圖書館回家對應的函數(shù)解析式為y=﹣0.06x+3.3,
當x=50時,y=﹣0.06×50+3.3=0.3,
所以答案是:0.3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:一次函數(shù)y=﹣2x+10的圖象與反比例函數(shù)(k>0)的圖象相交于A,B兩點(A在B的右側).

(1)當A(4,2)時,求反比例函數(shù)的解析式及B點的坐標;
(2)在1的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)當A(a,﹣2a+10),B(b,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BC交y軸于點D.若,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中,∠ABC=120°,E,F(xiàn)分別為AD,CD上的動點,且AE+CF=2,則線段EF長的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線AM平行于射線BN,∠B=90°,AB=4,C是射線BN上的一個動點,連接AC,作CD⊥AC,且AC=2CD,過C作CE⊥BN交AD于點E,設BC長為a.

(1)求△ACD的面積(用含a的代數(shù)式表示);
(2)求點D到射線BN的距離(用含有a的代數(shù)式表示);
(3)是否存在點C,使△ACE是以AE為腰的等腰三角形?若存在,請求出此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于A(﹣1,0)、B兩點,與y軸交于點C(0,2),拋物線的對稱軸交x軸于點D.

(1)求拋物線的解析式;
(2)求sin∠ABC的值;
(3)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出點P的坐標;如果不存在,請說明理由;
(4)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時線段EF最長?求出此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點D,E為BC的中點,連接DE并延長交AC的延長線于點F.
(1)求證:DE是⊙O的切線;
(2)若CF=2,DF=4,求⊙O直徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC=60°,點O從A點出發(fā),以2m/s的速度沿∠BAC的角平分線向右運動,在運動過程中,以O為圓心的圓始終保持與∠BAC的兩邊相切,設⊙O的面積為S(cm2),則⊙O的面積S與圓心O運動的時間t(s)的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點D,AE平分∠BAC交邊BC于點E,經(jīng)過點A、D、E的圓的圓心F恰好在y軸上,⊙F與y軸相交于另一點G.
(1)求證:BC是⊙F的切線;
(2)若點A、D的坐標分別為A(0,﹣1),D(2,0),求⊙F的半徑;
(3)試探究線段AG、AD、CD三者之間滿足的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=4 ,則S陰影=(
A.2π
B. π
C. π
D. π

查看答案和解析>>

同步練習冊答案