【題目】如圖,在△中,,為斜邊上的中點(diǎn),連接,以為直徑作⊙,分別與、交于點(diǎn)、.過(guò)點(diǎn)作⊥,垂足為點(diǎn).
(1)求證:為⊙的切線;
(2)連接,若,,求的長(zhǎng).
【答案】(1)見(jiàn)解析(2)5
【解析】
(1)欲證明NE為⊙O的切線,只要證明ON⊥NE.
(2)想辦法證明四邊形DMCN是矩形即可解決問(wèn)題.
(1)連接ON.
∵∠ACB=90°,D為斜邊的中點(diǎn),∴CD=DA=DBAB,∴∠BCD=∠B.
∵OC=ON,∴∠BCD=∠ONC,∴∠ONC=∠B,∴ON∥AB.
∵NE⊥AB,∴ON⊥NE,∴NE為⊙O的切線.
(2)由(1)得到:∠BCD=∠B,∴sin∠BCD=sin∠B.
∵NE=3,∴BN=5.
連接DN.
∵CD是⊙O的直徑,∴∠CND=90°,∴DN⊥BC,∴CN=BN=5,易證四邊形DMCN是矩形,∴MD=CN=BN=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),DP=1,AD=2,∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)B作BN∥MP交DC于點(diǎn)N.
(1)求線段PC之長(zhǎng);
(2)求線段PN之長(zhǎng);
(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F.求線段EF之長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)(1)如圖1,在△ABC中,點(diǎn)D,E,Q分別在AB,AC,BC上,且DE∥BC,AQ交DE于點(diǎn)P.求證:.
(2)如圖,在△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG,AF分別交DE于M,N兩點(diǎn).
①如圖2,若AB=AC=1,直接寫出MN的長(zhǎng);
②如圖3,求證MN2=DM·EN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨若移動(dòng)終端設(shè)備的升級(jí)換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選項(xiàng):A .和同學(xué)親友聊天;B.學(xué)習(xí);C.購(gòu)物;D.游戲;E.其它),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)査,得到如下圖表(部分信息未給出):
根據(jù)以上信息解答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生有多少人?
(2)求表中 的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)約有名學(xué)生,估計(jì)全校學(xué)生中利用手機(jī)購(gòu)物或玩游戲的共有多少人?
并根據(jù)以上調(diào)査結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;
(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=2AD,E、F、G分別是OC、OD、AB的中點(diǎn),下列結(jié)論:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四邊形BEFG是菱形.其中正確的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,正方形ABCD,BM、DN分別是正方形的兩個(gè)外角平分線,∠MAN=45°,將∠MAN繞著正方形的頂點(diǎn)A旋轉(zhuǎn),邊AM、AN分別交兩條角平分線于點(diǎn)M、N,聯(lián)結(jié)MN.
(1)求證:△ABM∽△NDA;
(2)聯(lián)結(jié)BD,當(dāng)∠BAM的度數(shù)為多少時(shí),四邊形BMND為矩形,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,其中,直線l是它的對(duì)稱軸,把該拋物線沿著x軸水平向左平移個(gè)單位長(zhǎng)度后,與x軸交于點(diǎn)A、B,在B的左側(cè),如圖1,P為平移后的拋物線上位于第一象限內(nèi)的一點(diǎn)
點(diǎn)A的坐標(biāo)為______;
若點(diǎn)P的橫坐標(biāo)為,求出當(dāng)m為何值時(shí)的面積最大,并求出這個(gè)最大值;
如圖2,AP交l于點(diǎn)D,當(dāng)D為AP的中點(diǎn)時(shí),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com