【題目】學期末,某班評選一名優(yōu)秀學生干部,下表是班長、學習委員和團支部書記的得分情況:
假設在評選優(yōu)秀干部時,思想表現(xiàn)、學習成績、工作能力這三方面的重要比為3 ∶3 ∶4 ,通過計算說明誰應當選為優(yōu)秀學生干部。
【答案】平均數(shù)分別為26.2 ,25.8 ,25.4 ,班長應當選.
【解析】
根據(jù)思想表現(xiàn)、學習成績、工作能力這三方面的不同權重,分別計算三人的加權平均分即可.
解:根據(jù)思想表現(xiàn)、學習成績、工作能力這三方面的重要比為3 ∶3 ∶4,可得思想表現(xiàn)、學習成績、工作能力這三方面的權重分別是0.3 ,0.3,0.4;
則班長的最終成績?yōu)椋?/span>;
學習委員的最終成績?yōu)椋?/span>;
團支部書記的最終成績?yōu)椋?/span>;
∵26.2 >25.8 >25.4
∴班長的最終成績最高,
∴班長當選.
故答案為:平均數(shù)分別為26.2 ,25.8 ,25.4 ,班長應當選.
科目:初中數(shù)學 來源: 題型:
【題目】已知,點P是等邊三角形△ABC中一點,線段AP繞點A逆時針旋轉60°到AQ,連接PQ、QC.
(1)求證:PB=QC;
(2)若PA=3,PB=4,∠APB=150°,求PC的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=kx+b與拋物線y=x2交于A(x1,y1),B(x2,y2)兩點,當OA⊥OB時,直線AB恒過一個定點,該定點坐標為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示平面直角坐標系中,已知A(-2,2),B(-3,-2),C(3,-2).
(1)在圖中畫出△ABC;
(2)將△ABC先向上平移4個單位長,再向右平移2個單位長得到△A1B1C1,寫出點A1,B1,C1的坐標;
(3)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)要求,解答下列問題:
(1)①方程x2﹣x﹣2=0的解為 ;
②方程x2﹣2x﹣3=0的解為 ;
③方程x2﹣3x﹣4=0的解為 ;
…
(2)根據(jù)以上方程特征及其解的特征,請猜想:
①方程x2﹣9x﹣10=0的解為 ;
②請用配方法解方程x2﹣9x﹣10=0,以驗證猜想結論的正確性.
(3)應用:關于x的方程 的解為x1=﹣1,x2=n+1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE是△ABC的中位線,F(xiàn)是DE的中點,CF的延長線交AB于點G,若△CEF的面積為12cm2,則S△DGF的值為( )
A.4cm2 B.6cm2 C.8cm2 D.9cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線與x軸交于A、B兩點(點A在點B的左側),交y軸的正半軸于點C,其頂點為M,MH⊥x軸于點H,MA交y軸于點N,sin∠MOH=.
(1)求此拋物線的函數(shù)表達式;
(2)過H的直線與y軸相交于點P,過O,M兩點作直線PH的垂線,垂足分別為E,F,若 時,求點P的坐標;
(3)將(1)中的拋物線沿y軸折疊,使點A落在點D處,連接MD,Q為(1)中的拋物線上的一動點,直線NQ交x軸于點G,當Q點在拋物線上運動時,是否存在點Q,使△ANG 與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經過t秒,以點P為圓心,cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值 (單位:秒)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點C按逆時針方向旋轉得到△A'B'C',此時點A'恰好在AB邊上,則點B'與點B之間的距離為( 。
A. 12 B. 6 C. 6 D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com