【題目】根據(jù)要求,解答下列問題:

(1)①方程x2﹣x﹣2=0的解為   ;

方程x2﹣2x﹣3=0的解為   

方程x2﹣3x﹣4=0的解為   

(2)根據(jù)以上方程特征及其解的特征,請猜想:

方程x2﹣9x﹣10=0的解為   

請用配方法解方程x2﹣9x﹣10=0,以驗(yàn)證猜想結(jié)論的正確性.

(3)應(yīng)用:關(guān)于x的方程   的解為x1=﹣1,x2=n+1.

【答案】①x1=﹣1,x2=2;②x1=﹣1,x2=3;③x1=﹣1,x2=4;(2)①方x1=﹣1,x2=10;②

x1=﹣1,x2=10;(3)x2﹣nx﹣(n+1)=0

【解析】分析:(1)①、②、③均用因式分解法求解即可;

2)根據(jù)(1)的規(guī)律寫出方程的解,然后用配方法求出方程的解進(jìn)行驗(yàn)證;

3)根據(jù)(1可知,二次項(xiàng)系數(shù)是根-1的相反數(shù),常數(shù)項(xiàng)是另一個(gè)根的相反數(shù),一次項(xiàng)系數(shù)比出常數(shù)項(xiàng)大1,照此規(guī)律寫出方程即可.

詳解:∵x2﹣x﹣2=0,

∴(x+1)(x-2)=0,

∴x1=﹣1,x2=2;

∵x2﹣2x﹣3=0,

∴(x+1)(x-3)=0,

∴x1=﹣1,x2=3;

∵x2﹣3x﹣4=0,

∴(x+1)(x-4)=0,

∴x1=﹣1,x2=4;

(2)根據(jù)以上方程特征及其解的特征,請猜想:

方程x2﹣9x﹣10=0的解為 x1=﹣1,x2=10;

②x2﹣9x﹣10=0,

移項(xiàng),得

x2﹣9x=10,

配方,得

x2﹣9x+=10+,

即(x﹣2=,

開方,得

x﹣=

x1=﹣1,x2=10;

(3)應(yīng)用:關(guān)于x的方程x2﹣nx﹣(n+1)=0的解為x1=﹣1,x2=n+1.

故答案為:x1=﹣1,x2=2;x1=﹣1,x2=3;x1=﹣1,x2=4;x1=﹣1,x2=10;x2﹣nx﹣(n+1)=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOC:∠COD:∠BOD=234,且A,O,B三點(diǎn)在一條直線上,OE,OF分別平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,將A、B、C三個(gè)字母隨機(jī)填寫在三個(gè)空格中(每空填一個(gè)字母,每空中的字母不重復(fù)),請你用畫樹狀圖或列表的方法求從左往右字母順序恰好是A、B、C的概率;

(2)若在如圖三個(gè)空格的右側(cè)增加一個(gè)空格,將A、B、C、D四個(gè)字母任意填寫其中(每空填一個(gè)字母,每空中的字母不重復(fù)),從左往右字母順序恰好是A、B、C、D的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3aa0的圖象與x軸交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的右側(cè)),y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D

1求頂點(diǎn)D的坐標(biāo)用含a的代數(shù)式表示).

2若以AD為直徑的圓經(jīng)過點(diǎn)C

①求a的值

②如圖2,點(diǎn)Ey軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN點(diǎn)P、MN分別和點(diǎn)O、B、E對應(yīng)),并且點(diǎn)M、N都在拋物線上MFx軸于點(diǎn)F,若線段BF=2MF求點(diǎn)M、N的坐標(biāo)

③如圖3點(diǎn)Q在拋物線的對稱軸上,Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,求點(diǎn)Q的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸正半軸上的兩點(diǎn)分別表示有理數(shù),為原點(diǎn),若,線段.

1______,______;

2)若點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度向軸正半軸運(yùn)動(dòng),求運(yùn)動(dòng)時(shí)間為多少時(shí);點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)距離的3倍;

3)數(shù)軸上還有一點(diǎn)表示的數(shù)為32,若點(diǎn)和點(diǎn)同時(shí)從點(diǎn)和點(diǎn)出發(fā),分別以每秒2個(gè)單位長度和每秒1個(gè)單位長度的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)到達(dá)點(diǎn)后,再立刻以同樣的速度返回,運(yùn)動(dòng)到終點(diǎn),求點(diǎn)和點(diǎn)運(yùn)動(dòng)多少秒時(shí),、兩點(diǎn)之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.

1)該店每天賣出這兩種菜品共多少份?

2)該店為了增加利潤,準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣1份;B種菜品售價(jià)每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線ACBD,垂足為O,點(diǎn)E,F,G,H分別為邊AB,BC,CDAD的中點(diǎn).若AC=10,BD=6,則四邊形EFGH的面積為( 。

A. 15B. 20C. 30D. 60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知∠AOB=80°,OC是∠AOB內(nèi)的一條射線,ODOE分別平分∠BOC和∠COA

(1)求∠DOE的度數(shù);

(2)當(dāng)射線OC繞點(diǎn)O旋轉(zhuǎn)到OB的左側(cè)時(shí)如圖②(或旋轉(zhuǎn)到OA的右側(cè)時(shí)如圖③),ODOE仍是∠BOC和∠COA的平分線,此時(shí)∠DOE的大小是否和(1)中的答案相同?若相同,請選取一種情況寫出你的求解過程;若不相同,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】荊州古城是聞名遐邇的歷史文化名城,五一期間相關(guān)部門對到荊州觀光游客的出行方式進(jìn)行了隨機(jī)抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計(jì)圖(尚不完整).根據(jù)圖中信息,下列結(jié)論錯(cuò)誤的是(  )

A. 本次抽樣調(diào)查的樣本容量是5000

B. 扇形圖中的m10%

C. 樣本中選擇公共交通出行的有2500

D. 五一期間到荊州觀光的游客有50萬人,則選擇自駕方式出行的有25萬人

查看答案和解析>>

同步練習(xí)冊答案