【題目】已知如圖1菱形ABCD,∠ABC=60°,邊長為 3,在菱形內(nèi)作等邊三角形△AEF,邊長為2 ,點(diǎn)E,點(diǎn)F,分別在AB,AC上,以A為旋轉(zhuǎn)中心將△AEF順時(shí)針轉(zhuǎn)動(dòng),旋轉(zhuǎn)角為α,如圖2
(1)在圖2中證明BE=CF;
(2)若∠BAE=45°,求CF的長度;
(3)當(dāng)CF= 時(shí),直接寫出旋轉(zhuǎn)角α的度數(shù).
【答案】
(1)
證明:連接AC,如圖2所示:
∵四邊形ABCD是菱形,
∴AB=BC=3,
∵∠ABC=60°,
∴△ABC是等邊三角形,
∴∠BAC=60°,AB=AC,
∵△AEF是等邊三角形,
∴AE=AF,∠EAF=60°,
∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,
∴∠BAE=∠CAF,
在△AEB和△AFC中, ,
∴△AEB≌△AFC(SAS),
∴BE=CF
(2)
解:過E點(diǎn)作EM⊥AB于M,如圖3所示:
∵∠BAE=45°,則△AEM是等腰直角三角形,
∴EM=AM= AE= ×2 =2,
∴BM=AB﹣AM=3﹣2=1,
在Rt△BME中,由勾股定理得:BE= = = ,
由(1)得:CF=BE=
(3)
解:過E點(diǎn)作EM⊥AB于M,如圖4所示,
則∠EMB=∠EMA=90°,
由(1)得:BE=CF= ,
設(shè)AM=x,則BM=3﹣x,
由勾股定理得:BM2=BE2﹣BM2,BM2=AE2﹣AM2,
∴BE2﹣BM2=AE2﹣AM2,即( )2﹣(3﹣x)2=(2 )2﹣x2,
解得:x=0,即點(diǎn)M與A重合,
∴∠BAE=90°,即α=90°;
同理可得:當(dāng)CF= 時(shí),α還等于270°;
綜上所述:當(dāng)CF= 時(shí),旋轉(zhuǎn)角α的度數(shù)為90°或270°
【解析】(1)連接AC,證明△AEB≌△AFC,即可得出結(jié)論;(2)過E點(diǎn)作EM⊥AB于M,則△AEM是等腰直角三角形,得出EM=AM= AE=2,求出BM=AB﹣AM=1,在Rt△BME中,由勾股定理求出BE,即可得出CF的長;(3)過E點(diǎn)作EM⊥AB于M,則∠EMB=∠EMA=90°,由(1)得:BE=CF= ,設(shè)AM=x,則BM=3﹣x,由勾股定理得出方程,積解方程求出x=0,得出點(diǎn)M與
A重合,求出∠BAE=90°,即α=90°;同理可得:當(dāng)CF= 時(shí),α還等于270°即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形是將正三角形按一定規(guī)律排列,第 1 個(gè)圖形中所有正三角形的個(gè)數(shù)有 1 個(gè),第 2 個(gè)圖形中所有正三角形的個(gè)數(shù)有 5 個(gè),第 3 個(gè)圖形中所有正三角形的個(gè)數(shù)有 17 個(gè),則第 5 個(gè)圖形中所有正三角形的個(gè)數(shù)有( )
A. 160 B. 161 C. 162 D. 163
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過A點(diǎn)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點(diǎn)B.
(1)求一次函數(shù)的解析式;
(2)判斷點(diǎn)C(4,-2)是否在該一次函數(shù)的圖象上,說明理由;
(3)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求△BOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.
(1)將這兩個(gè)三角形按圖①方式擺放,使點(diǎn)E落在AB上,DE的延長線交BC于點(diǎn)F.求證:BF+EF=DE;
(2)改變△ADE的位置,使DE交BC的延長線于點(diǎn)F(如圖②),則(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,寫出此時(shí)BF、EF與DE之間的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E 是∠AOB 的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接 CD,且交 OE 于點(diǎn)F.
(1)求證:OD=OC;
(2)求證:OE 是 CD 的垂直平分線;
(3)若∠AOB=60°,請(qǐng)你探究 OE,EF 之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著中國傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動(dòng),對(duì)部分品牌粽子進(jìn)行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(﹣12a2b2c)(﹣abc2)2=___________;
(2)(3a2b﹣4ab2﹣5ab﹣1)(﹣2ab2)=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年10月17日是我國第五個(gè)“扶貧日”,某校學(xué)生會(huì)干部對(duì)學(xué)生倡導(dǎo)的“扶貧”自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù),對(duì)學(xué)校部分捐款人數(shù)進(jìn)行調(diào)查和分組統(tǒng)計(jì)后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計(jì)圖,(圖中信息不完整),已知A.B兩組捐款人數(shù)的比為1:5.
被調(diào)查的捐款人數(shù)分組統(tǒng)計(jì)表:
組別 | 捐款額x/元 | 人數(shù) |
A | 1≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | ______ |
D | 30≤x<40 | ______ |
E | 40≤x | ______ |
請(qǐng)結(jié)合以上信息解答下列問題:
(1)求a的值和參與調(diào)查的總?cè)藬?shù);
(2)補(bǔ)全“被調(diào)查的捐款人數(shù)分組統(tǒng)計(jì)圖1”并計(jì)算扇形B的圓心角度數(shù);
(3)已知該校有學(xué)生2200人,請(qǐng)估計(jì)捐款數(shù)不少于30元的學(xué)生人數(shù)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=AC,∠BAC 和∠ACB 的平分線相交于點(diǎn)D,∠ADC=125°,那么∠CAB 的大小是_________度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com