【題目】已知∠BOPOP上點C,點A(A的左側(cè)),嘉嘉進行如下作圖:

以點O為圓心,OC為半徑畫弧,交OB于點D,連接CD

以點A為圓心,OC為半徑畫弧MN,交AP于點M

以點M為圓心,CD為半徑畫弧,交MN于點E,連接ME,作射線AE

如圖所示,則下列結(jié)論不成立的是(  )

A. CDEM B. AEOB C. ODC=∠AEM D. OAE=∠BDC

【答案】D

【解析】

由作法得∠MAE=COD,理由平行線的判定方法得到AEOB,再證明△AEM≌△OCD得到∠AME=OCD=ODC=AEM,從而可判定CDME

由作法得∠MAE=COD

AEOB,

AE=AM=OC=OD,ME=CD

∴△AEM≌△OCDSSS),

∴∠AME=OCD=ODC=AEM

CDME

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖1,△ABC中,BA=BC,D是平面內(nèi)不與A、B、C重合的任意一點,∠ABC=∠DBE,BD=BE.
(1)求證:△ABD≌△CBE;
(2)如圖2,當點D是△ABC的外接圓圓心時,請判斷四邊形BDCE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,某超市從一樓到二樓有一自動扶梯,圖②是側(cè)面示意圖.已知自動扶梯AB的坡度為1∶2.4,AB的長度是13米,MN是二樓樓頂,MNPQ , CMN上處在自動扶梯頂端B點正上方的一點,BCMN , 在自動扶梯底端A處測得C點的仰角為42°,則二樓的層高BC約為(精確到0.1米,sin42°≈0.67,tan42°≈0.90)( )

A.10.8米
B.8.9米
C.8.0米
D.5.8米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程隊修建一條總長為1860米的公路,在使用舊設(shè)備施工17天后,為盡快完成任務,工程隊引進了新設(shè)備,從而將工作效率提高了50%,結(jié)果比原計劃提前15天完成任務.
(1)工程隊在使用新設(shè)備后每天能修路多少米?
(2)在使用舊設(shè)備和新設(shè)備工作效率不變的情況下,工程隊計劃使用舊設(shè)備m天,使用新設(shè)備n(16≤n≤26)天修建一條總長為1500米的公路,使用舊設(shè)備一天需花費16000元,使用新設(shè)備一天需花費25000元,當m、n分別為何值時,修建這條公路的總費用最少,并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+(m+1)x+m﹣1與x軸交于A,B兩點,頂點為C,則△ABC面積的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,3).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出A1點的坐標及sin∠B1A1C1的值;
以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出 將△ABC放大后的△A2B2C2 , 并寫出A2點的坐標;
(2)若點D(a,b)在線段AB上,直接寫出經(jīng)過(2)的變化后點D的對應點D2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠1=∠2,∠C=∠D。

求證:∠A=∠F。

證明:∵∠1=∠2(已知),

又∠1=∠DMN(_______________),

∴∠2=∠_________(等量代換),

∴DB∥EC( ),

∴∠DBC+∠C=1800(兩直線平行 , ),

∵∠C=∠D( ),

∴∠DBC+ =1800(等量代換),

∴DF∥AC( ,兩直線平行),

∴∠A=∠F(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知C是線段AB垂直平分線m上一動點,連接AC,以AC為邊作等邊三角形ACD,點D在直線AB的上方,連接DB與直線m交于點E,連接BC,AE

(1)如圖1,點C在線段AB

①根據(jù)題意補全圖1;

②求證:∠EAC=∠EDC;

(2)如圖2,點C在直線AB的上方, 0°<∠CAB<30°,用等式表示線段BECE,DE之間的數(shù)量關(guān)系,并證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當x滿足條件 時,求出方程x2﹣2x﹣4=0的根.

查看答案和解析>>

同步練習冊答案