【題目】小李到某城市行政中心大樓辦事,假定乘電梯向上一樓記為+1,向下一樓記為–1.
小李從1樓出發(fā),電梯上下樓層依次記錄如下(單位:層): +5,–3,+10,–8,+12,–6,–10.
(1)請你通過計算說明小李最后是否回到出發(fā)點1樓;
(2)該中心大樓每層高2.8m,電梯每上或下1m需要耗電0.1度.根據(jù)小李現(xiàn)在所處的位置,請你算一算,當他辦事時電梯需要耗電多少度?
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有5個質(zhì)地、大小完全相同的小球上分別標有數(shù)字-1,-2,1,2,3.先將標有數(shù)字-2,1,3的小球放在第一個不透明的盒子里,再將其余小球放在第二個不透明的盒子里.現(xiàn)分別從兩個盒子里各隨即取出一個小球.
(1)請利用列表或畫樹狀圖的方法表示取出的兩個小球上數(shù)字之和所有可能的結(jié)果;
(2)求取出的兩個小球上的數(shù)字之和等于0的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有 .(把你認為正確的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,AC 是對角線,AB=CD,∠DAC+∠BCA=180°,∠BAC+∠ACD=90°,四邊形 ABCD 的面積是 18,則 CD 的長是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC、BD是它的對角線,∠ABC=∠ADC=90°,∠BCD是銳角.
(1)寫出這個四邊形的一條性質(zhì)并證明你的結(jié)論.
(2)若BD=BC,證明: .
(3)①若AB=BC=4,AD+DC=6,求 的值.
②若BD=CD,AB=6,BC=8,求sin∠BCD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CE⊥AB于點E,DF⊥AB于點F,CE平分∠ACB,DF平分∠BDE,
求證:AC∥ED.
證明:∵CE⊥AB于E,DF⊥AB于F(已知)
∴DF∥ (垂直于同一條直線的兩直線平行)
∴∠BDF=∠ ( )
∠FDE=∠ (兩直線平行,內(nèi)錯角相等)
∵CE平分∠ACB,DF平分∠BDE(已知)
∴∠ACE=∠ECB,∠EDF=∠BDF(角平分線的定義)
∴∠ACE=∠ (等量代換)
∴AC∥ED( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=mx2+(2m+1)x+2(m為實數(shù)).
(1)請?zhí)骄吭摵瘮?shù)圖象與x軸的公共點個數(shù)的情況(要求說明理由);
(2)在圖中給出的平面直角坐標系中分別畫出m=﹣1和m=1的函數(shù)圖象,并根據(jù)圖象直接寫出它們的交點坐標;
(3)探究:對任意實數(shù)m,函數(shù)的圖象是否一定過(2)中的點,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長是關于x的一元二次方程x2﹣7x+12=0的兩個根,且OA>OB.
(1)求OA、OB的長.
(2)若點E為x軸正半軸上的點,且S△AOE= ,求經(jīng)過D、E兩點的直線解析式及經(jīng)過點D的反比例函數(shù)的解析式,并判斷△AOE與△AOD是否相似.
(3)若點M在平面直角坐標系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,直接寫出F點的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com