如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點(diǎn)D,取AC的中點(diǎn)E,連接DE、OE.
(1)求證:DE是⊙O的切線;
(2)如果⊙O的半徑是cm,ED=2cm,求AB的長.

【答案】分析:(1)可證明DE是⊙O的切線,只要證得∠ODE=90°即可.
(2)先利用勾股定理求出OE的長,再利用中位線定理,可求出AB的長.
解答:(1)證明:連接OD,(1分)
∵O、E分別是BC、AC中點(diǎn),
∴OE∥AB.
∴∠1=∠2,∠B=∠3.
∵OB=OD,
∴∠2=∠3.
∵OD=OC,OE=OE,
∴△OCE≌△ODE.
∴∠OCE=∠ODE.
∵∠C=90°,
∴∠ODE=90°.(2分)
∴DE是⊙O的切線.(3分)

(2)解:在Rt△ODE中,
∵OD=,DE=2,
∴OE=.(5分)
又∵O、E分別是CB、CA的中點(diǎn),
∴AB=2•OE=2×=5.
∴所求AB的長是5cm.(7分)
點(diǎn)評:本題考查三角形的判定和性質(zhì)、以及切線的判定,還有勾股定理、中位線定理等知識的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點(diǎn)D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動,到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點(diǎn)P與點(diǎn)A不重合時,過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動時間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案