【題目】如圖1是一個長為、寬為的長方形,沿圖中虛線用剪刀剪成四塊完全一樣的小長方形,然后按圖2的形狀拼成一個正方形.
圖2中的陰影部分的正方形的邊長是 .
請用兩種不同的方法表示圖2中陰影部分的面積,并寫出下列三個代數(shù)式:之間的等量關(guān)系;
利用中的結(jié)論計算:,求的值;
根據(jù)中的結(jié)論,直接寫出和之間的關(guān)系;若,分別求出和的值.
【答案】(1) ;(2) ;(3) ;(4)4,12
【解析】
(1)圖2中,大正方形的邊長為:a+b,橫著看,a+b是由兩個b和陰影正方形的邊長構(gòu)成,相減便得陰影正方形邊長;
(2)方法一:圖1中已求出陰影正方形的邊長,邊長乘邊長即為面積;方法二:圖2長方形面積減圖2非陰影部分面積,即為陰影部分面積‘’
(3)由(2)可得之間的關(guān)系,運用這個關(guān)系可直接求得x+y的值;
(4)將m視為a,視為b,按照上述結(jié)論即可解決
解:(1)圖2中,大正方形的邊長為:a+b,
∴陰影正方形的邊長=a+b-b-b=a-b
陰影部分面積可以表示為:和
三個式子之間的等量關(guān)系:
由可知,
根據(jù)中的結(jié)論,可得
且不能為
科目:初中數(shù)學 來源: 題型:
【題目】林灣鄉(xiāng)修建一條灌溉水渠,如圖,水渠從A村沿北偏東65°方向到B村,從B村沿北偏西25°方向到C村水渠從C村沿什么方向修建,可以保持與AB的方向一致?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為更新果樹品種,某果園計劃新購進A,B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種樹苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計劃中,B種樹苗的數(shù)量不超過35棵,但不少于A種樹苗的數(shù)量,請設(shè)計購買方案,使總費用最低,并求出最低費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了慶祝校園藝術(shù)節(jié),準備購買一批盆花布置校園.已知1盆A種花和2盆B種花一共需13元,2盆A種花和1盆B種花一共需11元.
(1)求1盆A種花和1盒B種花的售價各是多少元?
(2)學校準備購進這兩種盆花共100盆,并且A種盆花的數(shù)量不超過B種盆花數(shù)量的2倍,請求出A種盆花的數(shù)量最多是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=在第一象限的圖象經(jīng)過矩形OABC對角線的交點E,與BC交于點D,若點B的坐標為(6,4).
(1)求E點的坐標及k的值;
(2)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE
證明:∵∠B+∠BCD=180°(已知)
∴AB∥CD( )
∴∠B=∠DCE( )
又∵∠B=∠D(已知 ),
∴___________ (等量代換)
∴ ∥
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是( 。
A. 30 B. 34 C. 36 D. 40
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE =12,CE =5,則平行四邊形ABCD的周長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如(圖1),在平面直角坐標系中,,,,且滿足,線段交軸于點.
(1)填空: , ;
(2)點為軸正半軸上一點,若,,且分別平分,如(圖2),求的度數(shù);
(3)求點的坐標;
(4)如(圖3),在軸上是否存在一點,使三角形的面積和三角形的面積相等?若存在,求出點坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com