【題目】如圖,Rt△ABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CE∥DB,BE∥DC,AD=3,DF=1,四邊形DBEC面積是_____

【答案】4

【解析】

根據(jù)平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線(xiàn)等于斜邊的一半得到其鄰邊相等:CD=BD,得出四邊形DBEC是菱形,由三角形中位線(xiàn)定理和勾股定理求得AB邊的長(zhǎng)度,然后根據(jù)菱形的性質(zhì)和三角形的面積公式進(jìn)行解答.

CEDB,BEDC,

∴四邊形DBEC為平行四邊形.

又∵RtABC中,∠ABC=90°,點(diǎn)DAC的中點(diǎn),

CD=BD=AC,

∴平行四邊形DBEC是菱形;

∵點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),AD=3,DF=1,

DFABC的中位線(xiàn),AC=2AD=6,SBCD=SABC,

BC=2DF=2.

又∵∠ABC=90°,

AB=

∵平行四邊形DBEC是菱形,

S四邊形DBEC=2SBCD=SABC=ABBC=×4×2=4

故答案為:4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次考試中,某班級(jí)的數(shù)學(xué)成績(jī)統(tǒng)計(jì)圖如下.下列說(shuō)法錯(cuò)誤的是( )

A. 得分在7080分之間的人數(shù)最多

B. 該班的總?cè)藬?shù)為40

C. 得分在90100分之間的人數(shù)最少

D. 及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=90°,點(diǎn)A,B分別在射線(xiàn)OM,ON上移動(dòng),∠OAB的平分線(xiàn)與∠OBA的外角平分線(xiàn)交于點(diǎn)C,試猜想:隨著點(diǎn)A,B的移動(dòng),∠ACB的大小是否發(fā)生變化,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某華為手機(jī)專(zhuān)賣(mài)店銷(xiāo)售5臺(tái)甲型手機(jī)和8臺(tái)乙型手機(jī)的利潤(rùn)為1600元,銷(xiāo)售15臺(tái)甲型手機(jī)和6臺(tái)乙型手機(jī)的利潤(rùn)為3000

(1) 求每臺(tái)甲型手機(jī)和乙型手機(jī)的利潤(rùn)

(2) 專(zhuān)賣(mài)店計(jì)劃購(gòu)進(jìn)兩種型號(hào)的華為手機(jī)共120臺(tái),其中乙型手機(jī)的進(jìn)貨量不低于甲型手機(jī)的2倍.設(shè)購(gòu)進(jìn)甲型手機(jī)x臺(tái),這120臺(tái)手機(jī)全部銷(xiāo)售的銷(xiāo)售總利潤(rùn)為y

直接寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式_______________,x的取值范圍是_______________

該商店如何進(jìn)貨才能使銷(xiāo)售總利潤(rùn)最大?說(shuō)明原因

(3) 專(zhuān)賣(mài)店預(yù)算員按照(2)中的方案準(zhǔn)備進(jìn)貨,同時(shí)專(zhuān)賣(mài)店對(duì)甲型手機(jī)銷(xiāo)售價(jià)格下調(diào)a元,結(jié)果預(yù)算員發(fā)現(xiàn)無(wú)論按照哪種進(jìn)貨方案最后銷(xiāo)售總利潤(rùn)不變.請(qǐng)你判斷有這種可能性嗎?如果有,求出a的值;如果沒(méi)有,說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題

情景:

試根據(jù)圖中的信息,解答下列問(wèn)題:

(1)購(gòu)買(mǎi)6根跳繩需___________元,購(gòu)買(mǎi)12根跳繩需_____________元

(2)小紅比小明多買(mǎi)2根,付款時(shí)小紅反而比小明少5元,你認(rèn)為有這種可能嗎?若有,請(qǐng)求出小紅購(gòu)買(mǎi)跳繩的根數(shù);若沒(méi)有,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD對(duì)角線(xiàn)交于點(diǎn)O,BE∥AC,AE∥BD,EO與AB交于點(diǎn)F.

(1)試判斷四邊形AEBO的形狀,并說(shuō)明你的理由;

(2)求證:EO=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光華農(nóng)機(jī)租賃公司共有50臺(tái)聯(lián)合收割機(jī),其中甲型20臺(tái),乙型30臺(tái),先將這50臺(tái)聯(lián)合收割機(jī)派往A、B兩地區(qū)收割小麥,其中30臺(tái)派往A地區(qū),20臺(tái)派往B地區(qū).兩地區(qū)與該農(nóng)機(jī)租賃公司商定的每天的租賃價(jià)格見(jiàn)表:

每臺(tái)甲型收割機(jī)的租金

每臺(tái)乙型收割機(jī)的租金

A地區(qū)

1800

1600

B地區(qū)

1600

1200

(1)設(shè)派往A地區(qū)x臺(tái)乙型聯(lián)合收割機(jī),租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金為y(元),求yx間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

(2)若使農(nóng)機(jī)租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金總額不低于79 600元,說(shuō)明有多少種分配方案,并將各種方案設(shè)計(jì)出來(lái);

(3)如果要使這50臺(tái)聯(lián)合收割機(jī)每天獲得的租金最高,請(qǐng)你為光華農(nóng)機(jī)租賃公司提一條合理化建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)服裝部分為了解服裝的銷(xiāo)售情況,統(tǒng)計(jì)了每位營(yíng)業(yè)員在某月的銷(xiāo)售額(單位:萬(wàn)元),并根據(jù)統(tǒng)計(jì)的這組銷(xiāo)售額的數(shù)據(jù),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

該商場(chǎng)服裝營(yíng)業(yè)員的人數(shù)為 ,圖①中m的值為 ;

求統(tǒng)計(jì)的這組銷(xiāo)售額數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿AB向點(diǎn)B移動(dòng);同時(shí)點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個(gè)單位的速度,沿BC向點(diǎn)C移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒(0<x≤3),解答下列問(wèn)題:

(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案