【題目】如圖,在平面直角坐標(biāo)系中,點A0,4),B30),連接AB,將△AOB沿過點B的直線折疊,使點A落在x軸上的點A′處,折痕所在的直線交y軸正半軸于點C,則直線BC的解析式為   

【答案】y=x+

【解析】

Rt△OAB中,OA=4,OB=3,用勾股定理計算出AB=5,再根據(jù)折疊的性質(zhì)得BA′=BA=5CA′=CA,則OA′=BA′OB=2,設(shè)OC=t,則CA=CA′=4t,在Rt△OA′C中,根據(jù)勾股定理得到t2+22=4t2,解得t=,則C點坐標(biāo)為(0,),然后利用待定系數(shù)法確定直線BC的解析式

解:∵A04),B3,0),

OA=4,OB=3,

RtOAB中,AB==5

∵△AOB沿過點B的直線折疊,使點A落在x軸上的點A′處,

BA′=BA=5,CA′=CA,

OA′=BA′OB=53=2,

設(shè)OC=t,則CA=CA′=4t,

RtOA′C中,

OC2+OA′2=CA′2

t2+22=4t2,解得t=

C點坐標(biāo)為(0,),

設(shè)直線BC的解析式為y=kx+b,

B30)、C0)代入得,解得

∴直線BC的解析式為y=x+

故答案為:y=x+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于點A1,6),B3,n)兩點.

1)求一次函數(shù)的表達式;

2)在y軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo)及PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DCAB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE

1)求證:AC平分∠DAB;

2)求證:△PCF是等腰三角形;

3)若∠BEC=30°,求證:以BCBE,AC邊的三角形為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:小聰遇到這樣一個問題: 如圖1,,請畫一個,使互補.

小聰是這樣思考的:首先通過分析明確射線的外部,畫出示意圖,如圖2所示:然后通過構(gòu)造平角找到的補角,

如圖3所示:進而分析要使互補,則需.

因此,小聰找到了解決問題的方法:反向延長射線得到射線,利用量角器畫出的平分線,這樣就得到了互補

(1)小聰根據(jù)自己的畫法寫出了己知和求證,請你完成證明.已知:如圖3,點在直線上,射線平分.求證: 互補. .

(2)參考小聰?shù)漠嫹,請在下圖中畫出--,使互余.(保留畫圖痕跡)

(3)已知互余,射線平分,射線平分.,直接寫出銳角的度數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,老師給出了如下問題:

1)以下是小剛的解答過程,請你將解答過程補充完整:

解:如圖2,因為,平分,

所以____________(角平分線的定義).

因為,

所以______.

2)小戴說:我覺得這道題有兩種情況,小剛考慮的是內(nèi)部的情況,事實上,還可能在的內(nèi)部”.根據(jù)小戴的想法,請你在圖1中畫出另一種情況對應(yīng)的圖形,并直接寫出的度數(shù):______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京張高鐵是2022年北京冬奧會的重要交通保障設(shè)施. 如圖所示,京張高鐵起自北京北站,途經(jīng)清河、沙河、呂平等站,終點站為張家口南站,全長174千米.

1)根據(jù)資料顯示,京張高鐵的客運價格擬定為0. 4元(人·千米),可估計京張高鐵單程票價約為_________元(結(jié)果精確到個位);

2)京張高鐵建成后,將是世界上第一條設(shè)計時速為350千米/時的高速鐵路. 乘高鐵從北京到張家口的時間將縮短至1小時,如果按此設(shè)計時速運行,那么每站(不計起始站和終點站)停靠的平均時間是多少分鐘?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,Ac上的中線BD把ABC的周長分為24cm30cm兩部分。求三角形的三邊長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點,若∠AEF=54,則∠B=( )

A. 54 B. 60 C. 72 D. 66

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中AB∥CD,對角線AC,BD相交于O,點E,F(xiàn)分別為BD上兩點,且BE=DF,∠AEF=∠CFB.

(1)求證:四邊形ABCD是平行四邊形;

(2)若AC=2OE,試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案