【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后端點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為 .

【答案】(10,3)
【解析】解:∵四邊形A0CD為矩形,D的坐標(biāo)為(10,8),
∴AD=BC=10,DC=AB=8,
∵矩形沿AE折疊,使D落在BC上的點(diǎn)F處,
∴AD=AF=10,DE=EF,
在Rt△AOF中,OF==6,
∴FC=10﹣6=4,
設(shè)EC=x,則DE=EF=8﹣x,
在Rt△CEF中,EF2=EC2+FC2 , 即(8﹣x)2=x2+42 , 解得x=3,
即EC的長(zhǎng)為3.
∴點(diǎn)E的坐標(biāo)為(10,3),
故答案為:(10,3).

根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理來(lái)求OF=6,然后設(shè)EC=x,則EF=DE=8﹣x,CF=10﹣6=4,根據(jù)勾股定理列方程求出EC可得點(diǎn)E的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用長(zhǎng)度一定的不銹鋼材料設(shè)計(jì)成外觀為矩形的框架(如圖①②中的一種).設(shè)豎檔AB=x米,請(qǐng)根據(jù)以上圖案回答下列問題:(題中的不銹鋼材料總長(zhǎng)均指各圖中所有黑線的長(zhǎng)度和,所有橫檔和豎檔分別與AD、AB平行)

(1)在圖①中,如果不銹鋼材料總長(zhǎng)度為12米,當(dāng)x為多少時(shí),矩形框架ABCD的面積為3平方米?
(2)在圖②中,如果不銹鋼材料總長(zhǎng)度為12米,當(dāng)x為多少時(shí),矩形框架ABCD的面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(1)(x+y2﹣(xy2

(2)

3)(2x-y+3)(2x+y-3

4)(2m+3n22m-3n2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2)C(3,4)

(1)請(qǐng)畫出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1

(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2;

(3)x軸上找一點(diǎn)P,使PAPB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)DABC內(nèi),點(diǎn)E為邊BC上一點(diǎn),連接DE、CD

1)如圖1,連接AE,若AED=∠A+∠D,求證:AB//CD

2)在(1)的結(jié)論下,過點(diǎn)A的直線MA//ED

如圖2,當(dāng)點(diǎn)E在線段BC上時(shí),猜想并驗(yàn)證MABCDE的數(shù)量關(guān)系;

如圖3,當(dāng)點(diǎn)E在線段BC的延長(zhǎng)線上時(shí),猜想并驗(yàn)證MABCDE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示-5,點(diǎn)B表示10.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸正方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸負(fù)方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)當(dāng)t 秒時(shí),PQ兩點(diǎn)相遇,求出相遇點(diǎn)所對(duì)應(yīng)的數(shù);

(2)當(dāng)t為何值時(shí),P,Q兩點(diǎn)的距離為3個(gè)單位長(zhǎng)度,并求出此時(shí)點(diǎn)P對(duì)應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.

(1)求證:△BDF是等腰三角形;
(2)如圖2,過點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連接FG交BD于點(diǎn)O.
①判斷四邊形BFDG的形狀,并說(shuō)明理由;
②若AB=6,AD=8,求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,已知∠1=∠2,∠C=∠D

1)判斷BDCE是否平行,并說(shuō)明理由;(2)說(shuō)明∠A=∠F的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,是角平分線,上的點(diǎn), 相交于點(diǎn).

(1) 如圖2,若=90°,求證: ;

(2) 如圖1,若=( 0°< <180°).

①求的值(用含的代數(shù)式表示);

②是否存在,使小于,如果存在,求出的范圍,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案