【題目】如圖1,在中,是角平分線,上的點(diǎn), 相交于點(diǎn).

(1) 如圖2,若=90°,求證: ;

(2) 如圖1,若=( 0°< <180°).

①求的值(用含的代數(shù)式表示);

②是否存在,使小于,如果存在,求出的范圍,如果不存在,請說明理由.

【答案】(1)見解析;(2) ; ②存在,理由見解析;

【解析】

(1) 由同角的余角相等可得,再由平分, 可得∠CAE=∠BAE,再由三角形的外角即可證得;

(2) ①由三角形外角的性質(zhì)以及角平分線的定義可得,再由三角形內(nèi)角和定理即可得到;

存在. 小于, 可得,繼而可求得答案.

(1) ∵,

,,

,

平分 ∴∠CAE=∠BAE,

∴∠CFE=∠ACD+∠CAE,∠CEF=∠B+∠BAE,

;

(2) ①∵,

,

,

;

存在. ∵因?yàn)橐?/span>小于, 必有,

, 所以

當(dāng)時,小于.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后端點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線 軸、 軸分別相交于點(diǎn)A(-1,0)和B(0,3),其頂點(diǎn)為D.

(1)求這條拋物線的解析式;
(2)若拋物線與 軸的另一個交點(diǎn)為E,求△ODE的面積;拋物線的對稱軸上是否存在點(diǎn)P使得△PAB的周長最短.若存在請求出點(diǎn)P的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC≌△DEF,DFBC,且∠B60°,∠F40°,點(diǎn)ADE上,則∠BAD的度數(shù)為_________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點(diǎn),FAD延長線上一點(diǎn),且DF=BE

1)求證:CE=CF;

2)若點(diǎn)GAD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展平后,得折痕AD,BE(如圖①),點(diǎn)O為其交點(diǎn).

(1)探求AO到OD的數(shù)量關(guān)系,并說明理由;
(2)如圖②,若P,N分別為BE,BC上的動點(diǎn).
(Ⅰ)當(dāng)PN+PD的長度取得最小值時,求BP的長度;
(Ⅱ)如圖③,若點(diǎn)Q在線段BO上,BQ=1,則QN+NP+PD的最小值=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的媽媽在菜市場買回3斤蘿卜、2斤排骨,準(zhǔn)備做蘿卜排骨湯.

媽媽:今天買這兩樣菜共花了45元,上月買同重量的這兩樣菜只要36;

爸爸:報(bào)紙上說了蘿卜的單價上漲50%,排骨單價上漲20%”;

小明:爸爸、媽媽,我想知道今天買的蘿卜和排骨的單價分別是多少?

請你通過列方程(組)求解這天蘿卜、排骨的單價(單位:元/斤).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1=2CFAB,DEAB,求證:FGBC

證明:∵CFAB,DEAB ______

∴∠BED=90°,∠BFC=90° ______

∴∠BED=BFC ______

EDFC ______

∴∠1=BCF ______

∵∠1=2 ______

∴∠2=BCF ______

FGBC ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖①擺放,點(diǎn)D為AB的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過點(diǎn)C.

(1)求∠ADE的度數(shù);
(2)如圖②,將△DEF繞點(diǎn)D順時針方向旋轉(zhuǎn)角 ,此時等腰直角三角尺記為 , 交AC于點(diǎn)M, 交BC于點(diǎn)N,試判斷 的值是否隨著 的變化而變化?如果不變,請求出 的值;反之,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案