【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,1),B(﹣1,3),C(﹣3,2).
(1)作出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)點(diǎn)A1的坐標(biāo) ,點(diǎn)B1的坐標(biāo) ;
(3)點(diǎn)P(a,a﹣2)與點(diǎn)Q關(guān)于x軸對(duì)稱,若PQ=8,則點(diǎn)P的坐標(biāo) .
【答案】答案見(jiàn)解析.
【解析】試題分析:(1)根據(jù)關(guān)于x軸對(duì)稱點(diǎn)的特征,可得A、B、C點(diǎn)的對(duì)稱點(diǎn),連接即可;
(2)根據(jù)(1)的畫圖或根據(jù)關(guān)于x軸對(duì)稱的點(diǎn)的特征直接得到點(diǎn)的坐標(biāo);
(3)根據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特征,可求出a的值,代入即可求解.
試題解析:(1)
(2)點(diǎn)的坐標(biāo)為(2,-1),點(diǎn)的坐標(biāo)為 (-1,-3) ;
(3)∵點(diǎn)P與Q關(guān)于y軸對(duì)稱,
∴Q點(diǎn)為(-a,a-2),
又∵PQ=8,
∴a=4或a=-4,
∴a-2=2或a-2=-6.
∴P的坐標(biāo)為 (4, 2)或(-4,-6);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上點(diǎn)A表示的數(shù)是-5 , 點(diǎn)B到點(diǎn)A的距離是3, 則點(diǎn)B所表示的數(shù)是________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,F(xiàn)H平分∠EFG.
(1)說(shuō)明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=S△ABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=150°,∠BCD=30°,點(diǎn)M在BC上,AB=BM,CM=CD,點(diǎn)N為AD的中點(diǎn),求證:BN⊥CN。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=60°,P為AB上一點(diǎn), Q為BC延長(zhǎng)線上一點(diǎn),且PA=CQ,連PQ交AC邊于D, PD=DQ,證明:△ABC為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)根據(jù)如圖所示的對(duì)話內(nèi)容回答下列問(wèn)題.
(1)求該魔方的棱長(zhǎng);
(2)求該長(zhǎng)方體紙盒的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com