【題目】如圖,四邊形內(nèi)接于,對(duì)角線為的直徑,過(guò)點(diǎn)作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.
(1)求證:DF是的切線;
(2)若,求的值.
【答案】(1)證明見(jiàn)解析;(2)tan∠ABD=2.
【解析】
(1)如圖,連接OD,由AC是直徑可得∠ADC=90°,利用直角三角形的性質(zhì)結(jié)合等腰三角形的性質(zhì)得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,進(jìn)而得出答案;
(2)由直角三角形兩銳角互余的關(guān)系可得∠DAC=∠DCE,可證明△DAC∽△DCE,利用相似三角形的性質(zhì)結(jié)合勾股定理表示出AD,DC的長(zhǎng),再利用圓周角定理得出tan∠ABD的值即可得答案.
(1)如圖,連接OD,
∵AC是⊙O直徑,
∴∠ADC=90°,
∵點(diǎn)F為CE中點(diǎn),
∴DF=CF,
∴∠FDC=∠DCF,
∵OD=OC,
∴∠ODC=∠OCD,
∵CE⊥AC,
∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
∴DF是⊙O的切線.
(2)∵∠OCD+∠DCF=∠DAC+∠OCD=90°,
∴∠DCF=∠DAC,
∵∠ADC=∠CDE=90°,
∴△DAC∽△DCE,
∴,即CD2=AD·DE,
∵,
∴AC2=20DE2,
∵AC2=CD2+AD2,
∴AD2+AD·DE=20DE2,
∴(AD+5DE)(AD-4DE)=0,
解得:AD=4DE或AD=-5DE(舍去),
∴CD===2DE,
∵∠ABD=∠ACD,
∴tan∠ABD=tan∠ACD===2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年3月12日是第41個(gè)植樹(shù)節(jié),某單位積極開(kāi)展植樹(shù)活動(dòng),決定購(gòu)買甲、乙兩種樹(shù)苗,用800元購(gòu)買甲種樹(shù)苗的棵數(shù)與用680元購(gòu)買乙種樹(shù)苗的棵數(shù)相同,乙種樹(shù)苗每棵比甲種樹(shù)苗每棵少6元.
(1)求甲種樹(shù)苗每棵多少元?
(2)若準(zhǔn)備用3800元購(gòu)買甲、乙兩種樹(shù)苗共100棵,則至少要購(gòu)買乙種樹(shù)苗多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七年級(jí)男生“跳繩”成績(jī)的情況,隨機(jī)選取該年級(jí)部分男生進(jìn)行測(cè)試.以下是根據(jù)測(cè)試成績(jī)繪制的統(tǒng)計(jì)圖表的一部分.
成績(jī)等級(jí) | 頻數(shù)(人) | 頻率 |
優(yōu)秀 | ||
良好 | ||
及格 | 10 | 0.2 |
不及格 | 0.1 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)被測(cè)試男生中,成績(jī)等級(jí)為“優(yōu)秀”的男生人數(shù)占被測(cè)試男生總?cè)藬?shù)的百分比為_(kāi)_______%,成績(jī)等級(jí)為“及格”的男生人數(shù)為_(kāi)_______人;
(2)被測(cè)試男生的總?cè)藬?shù)為_(kāi)_______人,成績(jī)等級(jí)為“不及格”的男生人數(shù)________人;
(3)若該校七年級(jí)共有570名男生,根據(jù)調(diào)查結(jié)果,估計(jì)該校七年級(jí)男生成績(jī)等級(jí)為“良好”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,點(diǎn)是邊酌中點(diǎn),動(dòng)點(diǎn)在邊上運(yùn)動(dòng),以為折痕將,折疊得到,連接,若,則的最小值是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形折疊,使頂點(diǎn)與邊上的一點(diǎn)重合(不與端點(diǎn),重合),折痕交于點(diǎn),交于點(diǎn),邊折疊后與邊交于點(diǎn),設(shè)正方形的周長(zhǎng)為,的周長(zhǎng)為,則的值為( )
A.B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,,點(diǎn)在平行四邊形的邊上,且,連接,若,,則線段的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)命題:
①當(dāng)x>0時(shí),y>0;
②若a=﹣1,則b=3;
③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;
④點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)G,F分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDFG周長(zhǎng)的最小值為6.
其中真命題的序號(hào)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形的兩邊OA,OC分別落在軸,軸的正半軸上,的坐標(biāo)為,反比例函數(shù)的圖象經(jīng)過(guò)的中點(diǎn)E,且與BC邊相交于點(diǎn)D.
(1)①求反比例函數(shù)的解析式及點(diǎn)D的坐標(biāo);
②直接寫(xiě)出的面積為________.
(2)若P是OA上的動(dòng)點(diǎn),當(dāng)值為最小時(shí),求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A是第一象限內(nèi)橫坐標(biāo)為的一個(gè)定點(diǎn),AC⊥x軸于點(diǎn)M,交直線y=﹣x于點(diǎn)N.若點(diǎn)P是線段ON上的一個(gè)動(dòng)點(diǎn),∠APB=30°,BA⊥PA,則點(diǎn)P在線段ON上運(yùn)動(dòng)時(shí),A點(diǎn)不變,B點(diǎn)隨之運(yùn)動(dòng).求當(dāng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)N時(shí),點(diǎn)B運(yùn)動(dòng)的路徑長(zhǎng)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com