【題目】如圖,等邊 ABC 的邊長是 2 , D E 分別為 AB 、 AC 的中點,連接CD ,過 E 點作 EF // DC BC 的延長線于點 F

(1) 求證:四邊形 CDEF 是平行四邊形;

(2)求四邊形 CDEF 的周長

【答案】(1)見解析;(2)2+2.

【解析】

1)直接利用三角形中位線定理得出DEBC,再利用平行四邊形的判定方法得出答案;
2)利用等邊三角形的性質(zhì)結(jié)合平行四邊形的性質(zhì)得出DC=EF,進(jìn)而求出答案.

(1)證明:∵D、E分別是AB,AC中點,

DEBC,DE=BC=1

EF // DC

∴四邊形CDEF是平行四邊形,

(2)∵四邊形DEFC是平行四邊形,

DC=EF,DE=CF

DAB的中點,等邊ABC的邊長是2,

AD=BD=1CDAB,BC=2,

DC=EF=

∴四邊形CDEF的周長是2+2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰ABC中,AB=AC,A=36°,DAC上的一點,AD=BD,則以下結(jié)論中正確的有(  )

①△BCD是等腰三角形;②點D是線段AC的黃金分割點;③△BCD∽△ABC;BD平分∠ABC.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸、y軸交于點B、C,與直線OA交于點A.已知點A的坐標(biāo)為(﹣3,5),OC4

1)分別求出直線AB、AO的解析式;

2)求ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為邊長為2的正方形ABCD的對角線BD上任一點,過點PPEBC于點EPFCD于點F,連接EF.給出以下4個結(jié)論:①APEF;②APEF;③EF最短長度為;④若∠BAP30°時,則EF的長度為2.其中結(jié)論正確的有(  )

A. ①②③B. ①②④C. ②③④D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的三個頂點坐標(biāo)為A(﹣2,3),B(﹣6,0),C(﹣1,0).

1)將ABC繞坐標(biāo)原點O旋轉(zhuǎn)180°,畫出圖形,并寫出點A的對應(yīng)點A′的坐標(biāo)_____;

2)將ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,直接寫出點A的對應(yīng)點A″的坐標(biāo)_____

3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D所有可能的坐標(biāo)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠生產(chǎn)一種新型電子產(chǎn)品,每件制造成本為20元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤=售價﹣制造成本)

(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價為多少元時,廠商每月獲得的利潤為400萬元?

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過520萬元,那么當(dāng)銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;OO′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤SAOC+SAOB=6+,其中正確的結(jié)論是( 。

A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對角線OC、AB交于點D,點E、F、G分別是CD、BD、BC的中點,以O(shè)為原點,直線OB為x軸建立平面直角坐標(biāo)系,則G、E、D、F四個點中與點A在同一反比例函數(shù)圖象上的是( 。

A. 點G B. 點E C. 點D D. 點F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(1,2),則點A1,C1的坐標(biāo)分別是 ( 。

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

同步練習(xí)冊答案