【題目】小紅將筆記本電腦水平放置在桌子上,顯示屏OB與底板OA所在水平線的夾角為120°時,感覺最舒適(如圖1),側(cè)面示意圖為圖2;使用時為了散熱,她在底板下面墊入散熱架ACO'后,電腦轉(zhuǎn)到AO'B'位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=24cm,O'C⊥OA于點C,O'C=12cm.
(1)求∠CAO'的度數(shù).
(2)顯示屏的頂部B'比原來升高了多少?
(3)如圖4,墊入散熱架后,要使顯示屏O'B'與水平線的夾角仍保持120°,則顯示屏O'B'應繞點O'按順時針方向旋轉(zhuǎn)多少度?
【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)顯示屏O′B′應繞點O′按順時針方向旋轉(zhuǎn)30°.
【解析】試題分析:(1)通過解直角三角形即可得到結(jié)果;
(2)過點B作BD⊥AO交AO的延長線于D,通過解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三點共線可得結(jié)果;
(3)顯示屏O′B′應繞點O′按順時針方向旋轉(zhuǎn)30°,求得∠EO′B′=∠FO′A=30°,既是顯示屏O′B′應繞點O′按順時針方向旋轉(zhuǎn)30°.
試題解析:(1)∵O′C⊥OA于C,OA=OB=24cm,
∴sin∠CAO′=,
∴∠CAO′=30°;
(2)過點B作BD⊥AO交AO的延長線于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,
∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,
∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,
∴顯示屏的頂部B′比原來升高了(36﹣12)cm;
(3)顯示屏O′B′應繞點O′按順時針方向旋轉(zhuǎn)30°,
理由:∵顯示屏O′B與水平線的夾角仍保持120°,
∴∠EO′F=120°,
∴∠FO′A=∠CAO′=30°,
∵∠AO′B′=120°,
∴∠EO′B′=∠FO′A=30°,
∴顯示屏O′B′應繞點O′按順時針方向旋轉(zhuǎn)30°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的頂點A(a、b)是一次函數(shù)y=x+m的圖像與反比例函數(shù)的圖像在第一象限的交點,且S△ABO=3。
①根據(jù)這些條件你能夠求出反比例函數(shù)的解析式嗎?如果能夠,請你求出來,如果不能,請說明理由。
②你能夠求出一次函數(shù)的函數(shù)關(guān)系式嗎?如果能,請你求出來,如果不能,請你說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在直線DF上,點B在直線AC上,若∠1=∠2,∠3=∠4,則∠A=∠F,請說明理由.
解:∵∠1=∠2(已知)
∠2=∠DGF
∴∠1=∠DGF(____________)
∴BD∥CE
∴∠3+∠C=180°( )
又∵∠3=∠4(已知)
∴∠4+∠C=180°
∴ ∥ (同旁內(nèi)角互補,兩直線平行)
∴∠A=∠F( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一款名為超級瑪麗的游戲中,瑪麗到達一個高為10米的高臺A,利用旗桿頂部的繩索,劃過90°到達與高臺A水平距離為17米,高為3米的矮臺B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點的高度MN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,點A、B分別在x、y軸上,點B的坐標為(0,1),∠BAO=30°.
(1)求AB的長度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點D.求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知方程組的解x、y滿足:x為非正數(shù),y為負數(shù).
(1)求a的取值范圍;
(2)在a的取值范圍中,當a為何整數(shù)時,關(guān)于x的不等式2ax+x>2a+1的解集為x<1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一農(nóng)民帶上若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,他手中持有的錢數(shù)(含備用零錢)y與售出的土豆千克數(shù)x的關(guān)系如圖所示,結(jié)合圖象回答下列問題:
(1)農(nóng)民自帶的零錢是______元,降價前他每千克土豆出售的價格是______元;
(2)降價后他按每千克0.8元將剩余土豆售完,這時他手中的錢(含備用零錢)是62元,求降價后的線段所表示的函數(shù)表達式并寫出它的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,花叢中有一路燈桿AB. 在燈光下,小明在D點處的影長DE=3米,沿BD方向行走到達G點,DG=5米,這時小明的影長GH=5米. 如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=x2+bx+c與x軸交于A(1,0)、B(4,0),與y軸交于點C
(1) 求拋物線的解析式
(2) 拋物線上一點D,滿足S△DAC=S△OAC,求點D的坐標
(3) 如圖2,已知N(0,1),將拋物線在點A、B之間部分(含點A、B)沿x軸向上翻折,得到圖T(虛線部分),點M為圖象T的頂點.現(xiàn)將圖象保持其頂點在直線MN上平移,得到的圖象T1與線段BC至少有一個交點,求圖象T1的頂點橫坐標的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com