【題目】在一款名為超級(jí)瑪麗的游戲中,瑪麗到達(dá)一個(gè)高為10米的高臺(tái)A,利用旗桿頂部的繩索,劃過90°到達(dá)與高臺(tái)A水平距離為17米,高為3米的矮臺(tái)B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點(diǎn)的高度MN.
【答案】2m
【解析】
試題分析:首先得出△AOE≌△OBF(AAS),進(jìn)而得出CD的長(zhǎng),進(jìn)而求出OM,MN的長(zhǎng)即可.
解:作AE⊥OM,BF⊥OM,
∵∠AOE+∠BOF=∠BOF+∠OBF=90°
∴∠AOE=∠OBF
在△AOE和△OBF中,
,
∴△AOE≌△OBF(AAS),
∴OE=BF,AE=OF
即OE+OF=AE+BF=CD=17(m)
∵EF=EM﹣FM=AC﹣BD=10﹣3=7(m),
∴2EO+EF=17,
則2×EO=10,
所以O(shè)E=5m,OF=12m,
所以O(shè)M=OF+FM=15m
又因?yàn)橛晒垂啥ɡ淼肙N=OA=13,
所以MN=15﹣13=2(m).
答:旗桿的高度OM為15米,瑪麗在蕩繩索過程中離地面的最低點(diǎn)的高度MN為2米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2 , 求:
(1)一次函數(shù)的解析式;
(2)△AOB的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測(cè)傾器測(cè)得河對(duì)岸小樹C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.則河的寬度為________米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營(yíng)運(yùn)規(guī)律如下:當(dāng)x不超過100元時(shí),觀光車能全部租出;當(dāng)x超過100元時(shí),每輛車的日租金每增加5元,租出去的觀光車就會(huì)減少1輛.已知所有觀光車每天的管理費(fèi)是1100元.
(1)優(yōu)惠活動(dòng)期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費(fèi))
(2)當(dāng)每輛車的日租金為多少元時(shí),每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-[(x-2)2+n]與x軸交于點(diǎn)A(m-2,0)和B(2m+3,0)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接BC.
(1)求m,n的值;
(2)點(diǎn)N為拋物線上的一動(dòng)點(diǎn),且位于直線BC上方,連接CN,BN.求△NBC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅將筆記本電腦水平放置在桌子上,顯示屏OB與底板OA所在水平線的夾角為120°時(shí),感覺最舒適(如圖1),側(cè)面示意圖為圖2;使用時(shí)為了散熱,她在底板下面墊入散熱架ACO'后,電腦轉(zhuǎn)到AO'B'位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=24cm,O'C⊥OA于點(diǎn)C,O'C=12cm.
(1)求∠CAO'的度數(shù).
(2)顯示屏的頂部B'比原來(lái)升高了多少?
(3)如圖4,墊入散熱架后,要使顯示屏O'B'與水平線的夾角仍保持120°,則顯示屏O'B'應(yīng)繞點(diǎn)O'按順時(shí)針方向旋轉(zhuǎn)多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=6,點(diǎn)D在邊AC上,AD的中垂線交BC于點(diǎn)E.若∠AED=∠B,CE=3BE,則CD等于( 。
A. B. 2C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點(diǎn),其中a,b,c滿足關(guān)系式.
(1)求a,b,c的值;
(2)如果在第二象限內(nèi)有一點(diǎn)P(m,),使四邊形ABOP的面積與三角形ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com