【題目】(8分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(2,3),B(-3,n)兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點,且滿足△PAB的面積是5,求OP的長.
【答案】(1)y=x+1;(2)1
【解析】試題分析:(1)將A坐標代入反比例函數(shù)解析式中求出m的值,即可確定出反比例函數(shù)解析式;設(shè)直線AB解析式為y=kx+b,將B坐標代入反比例解析式中求出n的值,確定出B坐標,將A與B坐標代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;
(2)如圖所示,對于一次函數(shù)解析式,令x=0求出y的值,確定出C坐標,得到OC的長,三角形ABP面積由三角形ACP面積與三角形BCP面積之和求出,由已知的面積求出PC的長,即可求出OP的長.
解:(1)∵反比例函數(shù)y=的圖象經(jīng)過點A(2,3),
∴m=6.
∴反比例函數(shù)的解析式是y=,
∵B點(﹣3,n)在反比例函數(shù)y=的圖象上,
∴n=﹣2,
∴B(﹣3,﹣2),
∵一次函數(shù)y=kx+b的圖象經(jīng)過A(2,3)、B(﹣3,﹣2)兩點,
∴,
解得:,
∴一次函數(shù)的解析式是y=x+1;
(2)對于一次函數(shù)y=x+1,令x=0求出y=1,即C(0,1),OC=1,
根據(jù)題意得:S△ABP=PC×2+PC×3=5,
解得:PC=2,
則OP=OC+CP=1+2=3或OP=CP﹣OC=2﹣1=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店用36000元購進甲、乙兩種商品,銷售完后共獲利6000元,其中甲種商品每件進價120元,售價138元;乙種商品每件進價100元,售價120元.
(1)該商店購進甲、乙兩種商品各多少件.
(2)商店第二次以原進價購進甲、乙兩種商品.購進乙種商品的件數(shù)不變,而購進甲種商品的件數(shù)是第一次的2倍,甲種商品按原售價出售,而乙種商品打折降價銷售。若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于8160元,乙種商品最低售價為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα=.下列結(jié)論:①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8或;④0<CE≤6.4.其中正確的結(jié)論是______________.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為配合全科大閱讀活動,學(xué)校團委對全校學(xué)生閱讀興趣調(diào)查的數(shù)據(jù)進行整理.欲反映學(xué)生感興趣的各類圖書所占百分比,最適合的統(tǒng)計圖是( )
A. 條形統(tǒng)計圖B. 頻數(shù)直方圖C. 折線統(tǒng)計圖D. 扇形統(tǒng)計圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016·赤峰)為有效開發(fā)海洋資源,保護海洋權(quán)益,我國對南海諸島進行了全面調(diào)查.如圖,一測量船在A島測得B島在北偏西30°方向,C島在北偏東15°方向,航行100海里到達B島,在B島測得C島在北偏東45°,求B,C兩島及A,C兩島的距離.(結(jié)果保留到整數(shù), ≈1.41, ≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 對角線互相平分的四邊形是平行四邊形
B. 兩組對邊分別相等的四邊形是平行四邊形
C. 一組對邊平行且相等的四邊形是平行四邊形
D. 一組對邊相等,另一組對邊平行的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我區(qū)注重城市綠化提高市民生活質(zhì)量,新建林蔭公園計劃購買甲、乙兩種樹苗共800株,甲種樹苗每株12元,乙種樹苗每株15元.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%、90%.
(1)若購買這兩種樹苗共用去10500元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費用最低?并求出最低費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com