已知二次函數(shù)y=a(x-m)2-a(x-m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個公共點;
(2)設(shè)該函數(shù)的圖象的頂點為C,與x軸交于A,B兩點,與y軸交于點D.
①當(dāng)△ABC的面積等于1時,求a的值;
②當(dāng)△ABC的面積與△ABD的面積相等時,求m的值.
【答案】分析:(1)把(x-m)看作一個整體,令y=0,利用根的判別式進(jìn)行判斷即可;
(2)①令y=0,利用因式分解法解方程求出點A、B的坐標(biāo),然后求出AB,再把拋物線轉(zhuǎn)化為頂點式形式求出頂點坐標(biāo),再利用三角形的面積公式列式進(jìn)行計算即可得解;
②令x=0求出點D的坐標(biāo),然后利用三角形的面積列式計算即可得解.
解答:(1)證明:令y=0,a(x-m)2-a(x-m)=0,
△=(-a)2-4a×0=a2,
∵a≠0,
∴a2>0,
∴不論a與m為何值,該函數(shù)的圖象與x軸總有兩個公共點;

(2)解:①y=0,則a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,
解得x1=m,x2=m+1,
∴AB=(m+1)-m=1,
y=a(x-m)2-a(x-m)=a(x-m-2-,
△ABC的面積=×1×||=1,
解得a=±8;

②x=0時,y=a(0-m)2-a(0-m)=am2+am,
所以,點D的坐標(biāo)為(0,am2+am),
△ABD的面積=×1×|am2+am|,
∵△ABC的面積與△ABD的面積相等,
×1×|am2+am|=×1×||,
整理得,m2+m-=0或m2+m+=0,
解得m=或m=-
點評:本題是對二次函數(shù)的綜合考查,主要利用了根的判別式,三角形的面積,把(x-m)看作一個整體求解更加簡便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象過點A(1,2),B(3,2),C(0,-1),D(2,3).點P(x1,y1),Q(x2,y2)也在該函數(shù)的圖象上,當(dāng)0<x1<1,2<x2<3時,y1與y2的大小關(guān)系正確的是( 。
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象經(jīng)過點(0,3),頂點坐標(biāo)為(1,4),
(1)求這個二次函數(shù)的解析式;
(2)求圖象與x軸交點A、B兩點的坐標(biāo);
(3)圖象與y軸交點為點C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莒南縣二模)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).
其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;
③當(dāng)x<0時,y<0;④方程ax2+bx+c=0(a≠0)有兩個大于-1的實數(shù)根;⑤2a+b=0.其中,正確的說法有
②④⑤
②④⑤
.(請寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,已知A點坐標(biāo)為(-1,0),且對稱軸為直線x=2,則B點坐標(biāo)為
(5,0)
(5,0)

查看答案和解析>>

同步練習(xí)冊答案