【題目】如圖,某教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高2米的影子CE;而當(dāng)光線與地面夾角是45°時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有13米的距離(B、F、C在一條直線上),求教學(xué)樓AB的高度(sin22°≈ ,cos22°≈ ,tan22°≈

【答案】解:(1)過(guò)點(diǎn)E作EM⊥AB,垂足為M.

設(shè)AB為x.

Rt△ABF中,∠AFB=45°,

∴BF=AB=x,

∴BC=BF+FC=x+13,

在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,

tan22°= ,

=

解得:x=12.

即教學(xué)樓的高12m.


【解析】首先構(gòu)造直角三角形△AEM,利用tan22°= ,求出即可;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四個(gè)全等的直角三角形按圖示方式圍成正方形ABCD,過(guò)各較長(zhǎng)直角邊的中點(diǎn)作垂線,圍成面積為的小正方形EFGH,已知AMRtABM較長(zhǎng)直角邊,AM=EF,則正方形ABCD的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛貨車(chē)從倉(cāng)庫(kù)O出發(fā)在東西街道上運(yùn)送水果,規(guī)定向東為正方向,一次到達(dá)的5個(gè)銷售地點(diǎn)依次分別為A,B,C,D,E,最后回到倉(cāng)庫(kù)O,貨車(chē)行駛的記錄(單位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.請(qǐng)問(wèn):

(1)請(qǐng)以倉(cāng)庫(kù)O為原點(diǎn),向東為正方向,選擇適當(dāng)?shù)膯挝婚L(zhǎng)度,畫(huà)出數(shù)軸,并標(biāo)出A,B,C,D,E的位置;

(2)試求出該貨車(chē)共行駛了多少千米?

(3)如果貨車(chē)運(yùn)送的水果以100千克為標(biāo)準(zhǔn)重量,超過(guò)的千克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù),則運(yùn)往A,B,C,D,E五個(gè)地點(diǎn)的水果重量可記為:

+50,﹣15,+25,﹣10,﹣15,則該貨車(chē)運(yùn)送的水果總重量是多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(3,﹣6)是二次函數(shù)y=ax2上的一點(diǎn),則這二次函數(shù)的解析式是

【答案】y=﹣x2

【解析】

試題分析:將點(diǎn)A(3,﹣6)代入y=ax2,利用待定系數(shù)法法求該二次函數(shù)的解析式即可﹣6=9a,

解得a=﹣因此該二次函數(shù)的解析式為:y=﹣x2

考點(diǎn):待定系數(shù)法求二次函數(shù)解析式

型】填空
結(jié)束】
15

【題目】在一個(gè)不透明的口袋中裝有8個(gè)紅球和若干個(gè)白球,它們除顏色外其它完全相同,通過(guò)多次摸球試驗(yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在40%附近,則口袋中白球可能有________個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一塊三角形的空地,其三邊的長(zhǎng)分別為20m,30m,40m,現(xiàn)要把它分成面積為234的三部分,分別種植不同的花草,請(qǐng)你設(shè)計(jì)一種方案,并簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在反比例函數(shù)y= (k>0,x>0)的圖象上,點(diǎn)D的坐標(biāo)為(4,3).

(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點(diǎn)D落在函數(shù)y= (k>0,x>0)的圖象上時(shí),求菱形ABCD沿x軸正方向平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,邊長(zhǎng)為2的正方形ABCD中,點(diǎn)P在AB邊上(不與點(diǎn)A、B重合),點(diǎn)Q在BC邊上(不與點(diǎn)B、C重合)
第一次操作:將線段PQ繞點(diǎn)Q順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)P落在正方形上時(shí),記為點(diǎn)M;
第二次操作:將線段QM繞點(diǎn)M順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)Q落在正方形上時(shí),記為點(diǎn)N;
依次操作下去…

(1)如圖2,經(jīng)過(guò)兩次操作后得到△PQD、△PQD的形狀是 , 求此時(shí)線段PQ的長(zhǎng) ;
(2)若經(jīng)過(guò)三次操作可得到四邊形PQMN.
①請(qǐng)直接判斷四邊形PQMN的形狀,直接寫(xiě)出此時(shí)此刻AP與BQ的數(shù)量關(guān)系;
②以①中的結(jié)論為前提,直接寫(xiě)出四邊形PQMN的面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解七年級(jí)學(xué)生體育測(cè)試情況,以七年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,?/span>AB,CD四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:

(說(shuō)明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下)

1)計(jì)算D級(jí)的學(xué)生人數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)計(jì)算扇形統(tǒng)計(jì)圖中A級(jí)所在的扇形的圓心角度數(shù):

3)若該校七年級(jí)有600名學(xué)生,請(qǐng)估計(jì)體育測(cè)試中B級(jí)學(xué)生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DAB邊的中點(diǎn),過(guò)點(diǎn)D作邊AB的垂線l,El上任意一點(diǎn),且AC=5,BC=8,則△AEC的周長(zhǎng)最小值為______

查看答案和解析>>

同步練習(xí)冊(cè)答案