【題目】解方程:
(1)3x(x+3)=2(x+3)
(2)2x2﹣4x﹣3=0
(3)x2+4x+2=0
(4)(y+2)2﹣(3y﹣1)2=0
【答案】(1) x1=﹣3,x2=;(2) x1=1+,x2=1﹣;(3) x1=﹣2+,x2=﹣2﹣;(4)y1=﹣,y2=.
【解析】
(1)首先移項,然后提取公因式,即可得解;
(2)利用配方法,即可得解;
(3)利用配方法,即可得解;
(4)利用平方差公式,即可得解.
(1) 3x(x+3)=2(x+3)
(x+3)(3x﹣2)=0,
x+3=0或3x﹣2=0,
解得x1=﹣3;x2=;
(2)2x2﹣4x﹣3=0
x2﹣2x=,
x2﹣2x+1=+1
(x﹣1)2=
x﹣1=±
解得;
(3)x2+4x+2=0
x2+4x+4=2,
(x+2)2=2,
x+2=±
解得;
(4)(y+2)2﹣(3y﹣1)2=0
(y+2+3y﹣1)(y+2﹣3y+1)=0,
y+2+3y﹣1=0或y+2﹣3y+1=0,
解得.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A在反比例函數(shù)y =(x>0)的圖象上,過點A作AC⊥x軸,垂足是C,一次函數(shù)y =kx+b的圖象經(jīng)過點A,與y軸的正半軸交于點B,AC =OC =2OB.
(1)求點A的坐標(biāo);
(2)求一次函數(shù)的表達式,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格上有△ABC和△DEF.
(1)這兩個三角形相似嗎?為什么?
(2)請直接寫出∠A的度數(shù) ;
(3)在上邊的網(wǎng)格內(nèi)再畫一個三角形,使它與△ABC相似,并求出其相似比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當(dāng)=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某校為了解九年級男同學(xué)的體育考試準(zhǔn)備情況,隨機抽取部分男同學(xué)進行了1000米跑測試.按照成績分為優(yōu)秀、良好、合格與不合格四個等級.學(xué)校繪制了如下不完整的統(tǒng)計圖.
(1)根據(jù)給出的信息,補全兩幅統(tǒng)計圖;
(2)該校九年級有600名男生,請估計成績未達到良好有多少名?
(3)某班甲、乙兩位成績優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運動會1000米比賽,預(yù)賽分為A、B、C三組進行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線的函數(shù)表達式為,它與軸、軸的交點分別為A、B兩點.
(1)求點A、B的坐標(biāo);
(2)設(shè)F是軸上一動點,⊙P經(jīng)過點B且與軸相切于點F,設(shè)⊙P的圓心坐標(biāo)為P(x,y),求y與之間的函數(shù)關(guān)系;
(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點B?若存在,求出圓心P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4的網(wǎng)格中,每一個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點,以O為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系.若拋物線y=x2+bx+c的圖象至少經(jīng)過圖中(4×4的網(wǎng)格中)的三個格點,并且至少一個格點在x軸上,則符合要求的拋物線一定不經(jīng)過的格點坐標(biāo)為( )
A.(1,3)B.(2,3)C.(1,4)D.(2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花圃用花盆培育某種花苗,經(jīng)過實驗發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系.每盆植入3株時,平均單株盈利3元;以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元.要使每盆的盈利達到10元,每盆應(yīng)該植多少株?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com