【題目】如圖,在正方形網(wǎng)格上有ABCDEF

1)這兩個(gè)三角形相似嗎?為什么?

2)請(qǐng)直接寫(xiě)出∠A的度數(shù)   ;

3)在上邊的網(wǎng)格內(nèi)再畫(huà)一個(gè)三角形,使它與ABC相似,并求出其相似比.

【答案】1)相似,理由見(jiàn)解析;(245;(3)見(jiàn)解析

【解析】

1)根據(jù)勾股定理列式求出ABAC、BC、DE、DF、EF的長(zhǎng)度,然后根據(jù)三邊對(duì)應(yīng)成比例,兩三角形相似解答;

2)取AC的中點(diǎn)O,連接BO,根據(jù)網(wǎng)格結(jié)構(gòu)可以判斷∠ABO=90°,ABO是等腰直角三角形,即可得解;

3)把ABC三邊擴(kuò)大倍,然后利用網(wǎng)格結(jié)構(gòu)作出即可.

1AB=

AC=,

BC=5,

DE=1,

DF=

EF=,

,

∴△ABC∽△DEF

2)如圖,取AC的中點(diǎn)O,連接BO,

ABO是等腰直角三角形,

∴∠A=45°;

3)如圖,A′B′C′ABC相似,它們的相似比是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在矩形ABCD,AB=4,BC=6,點(diǎn)E為線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A. 點(diǎn)B重合),先將矩形ABCD沿CE折疊,使點(diǎn)B落在點(diǎn)F處,CFAD于點(diǎn)H.

(1)求證:△AEG∽△DHC;

(2)若折疊過(guò)程中,CFAD的交點(diǎn)H恰好是AD的中點(diǎn)時(shí),求tanBEC的值;

(3)若折疊后,點(diǎn)B的對(duì)應(yīng)F落在矩形ABCD的對(duì)稱(chēng)軸上,求此時(shí)AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2(2m1)xm2 10.

(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;

(2)若方程兩實(shí)數(shù)根分別為x1,x2,且滿足,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OABC是邊長(zhǎng)為1的正方形,OCx軸正半軸的夾角為15°,點(diǎn)B在拋物線y=ax2(a<0)的圖象上,則a的值為( 。

A. B. C. ﹣2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(10),OC=3OB,


1)求拋物線的解析式;
2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線上.是否存在以AC,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程ax2+bx+c0a≠0),下列說(shuō)法:①若方程有兩個(gè)互為相反數(shù)的實(shí)數(shù)根,則b0;②若方程ax2+bx+c0沒(méi)有實(shí)數(shù)根,則方程ax2+bxc0必有兩個(gè)不相等的實(shí)根;③若二次三項(xiàng)式ax2+bx+c是完全平方式,則b24ac0;④若c0,則方程必有兩個(gè)不相等的實(shí)數(shù)根.其中正確的是( 。

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】阿波羅尼奧斯(Apollonius of Perga,約公元前262-190),古希臘數(shù)學(xué)家,與歐幾里得,阿基米德齊名,他的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果.

材料:《圓錐曲線論》里面對(duì)拋物線的定義:平面內(nèi)一個(gè)動(dòng)點(diǎn)到一個(gè)定點(diǎn)與一條定直線的距離之比等于1,或者說(shuō):平面內(nèi)一動(dòng)點(diǎn)到一定點(diǎn)與一條直線的距離相等的軌跡就是拋物線.

問(wèn)題:已知點(diǎn),直線,連接,若點(diǎn)到直線的距離與的長(zhǎng)相等,請(qǐng)求出的關(guān)系式.

解:如圖,∵,

,直線,

∴點(diǎn)到直線的距離為

∵點(diǎn)到直線的距離與的長(zhǎng)相等,

平方化簡(jiǎn)得,.

若將上述問(wèn)題中點(diǎn)坐標(biāo)改為,直線變?yōu)?/span>,按照問(wèn)題解題思路,試求出的關(guān)系式,并在平面直角坐標(biāo)系中利用描點(diǎn)法畫(huà)出其圖象,你能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

13xx+3)=2x+3

22x24x30

3x2+4x+20

4)(y+22﹣(3y120

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為矩形ABCD對(duì)角線的交點(diǎn),DEAC,CEBD.

1)試判斷四邊形OCED的形狀,并說(shuō)明理由;

2)若∠DOC = 60°,BC = 6,求矩形ABCD的對(duì)角線長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案