【題目】如圖,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,還需添加的條件是_________.(只需填一個)
【答案】AC=AE等.
【解析】要使要使△ABC≌△ADE,已知AB=AD,∠1=∠2得出∠BAC=∠DAE,若添加∠B=∠D或∠C=∠E可以利用ASA判定其全等,添加AC=AE可以利用SAS判定其全等.
解:∵AB=AD,∠1=∠2
∴∠BAC=∠DAE
∴若添加∠B=∠D或∠C=∠E可以利用ASA判定△ABC≌△ADE
若添加AC=AE可以利用SAS判定△ABC≌△ADE
故填空答案:∠B=∠D或∠C=∠E或AC=AE.
三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點.
(1)求證:BM=CM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結論;
(3)當AD:AB的值為多少時,四邊形MENF是正方形(只寫結論,不需證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①兩點之間,線段最短;②同旁內角互補;③若AC=BC,則點C是線段AB的中點;④經(jīng)過一點有且只有一條直線與這條直線平行,其中正確的說法有( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),設慢車行駛的時間為x(h),兩車之間的距離為y(km).圖中的折線表示y與x之間的函數(shù)關系.根據(jù)圖象進行以下探究:
(1)甲、乙兩地之間的距離為_________km;
(2)求慢車和快車的速度;
(3)請解釋圖中點C的實際意義;
(4)分別寫出線段AB、BC所表示的y與x之間的函數(shù)關系式;
(5)在整個行駛過程中,兩車何時相距25km,請求出相應的x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ ABC 中,∠ B =∠ C ,∠ BAD =20°,且∠ ADE =∠ AED ,
求∠ CDE 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com