【題目】如圖,E、F、 G、H分別為四邊形ABCD四邊之中點(diǎn).
(1)求證:四邊形EFGH為平行四邊形;
(2)當(dāng)AC、BD滿足______時(shí),四邊形EFGH為矩形.
【答案】(1)見解析;(2)AC⊥BD
【解析】
(1)連接BD,根據(jù)中位線的性質(zhì)可得EH∥BD,EH=,FG∥BD,FG=,從而得出EH∥FG,EH= FG,然后根據(jù)平行四邊形的判定定理即可證出結(jié)論;
(2)當(dāng)AC⊥BD時(shí),連接AC,根據(jù)中位線的性質(zhì)可得EF∥AC,從而得出EF⊥BD,然后由(1)的結(jié)論可證出EF⊥EH,最后根據(jù)有一個(gè)角是直角的平行四邊形是矩形即可證出結(jié)論.
(1)證明:連接BD
∵E、F、 G、H分別為四邊形ABCD四邊的中點(diǎn)
∴EH是△ABD的中位線,FG是△CBD的中位線
∴EH∥BD,EH=,FG∥BD,FG=
∴EH∥FG,EH= FG
∴四邊形EFGH為平行四邊形;
(2)當(dāng)AC⊥BD時(shí),四邊形EFGH為矩形,理由如下
連接AC,
∵E、F為BA和BC的中點(diǎn)
∴EF為△BAC的中位線
∴EF∥AC
∵AC⊥BD
∴EF⊥BD
∵EH∥BD
∴EF⊥EH
∴∠FEH=90°
∵四邊形EFGH為平行四邊形
∴四邊形EFGH為矩形
故答案為:AC⊥BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,AB于E,F點(diǎn),若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△CDM的周長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形紙片中,,,點(diǎn)(不與,重合)是上任意一點(diǎn),將此三角形紙片按下列方式折疊,若的長度為,則的周長為__________.(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3)、B(﹣2,﹣2)、C(4,﹣2),則△ABC外接圓半徑的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為解決部分市民冬季集中取暖問題,需鋪設(shè)一條長4000米的管道,為盡量減少施工對(duì)交通造成的影響,施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程=20,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( )
A. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期20天完成
B. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期20天完成
C. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前20天完成
D. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前20天完成
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有兩輛玩具車進(jìn)行30米的直跑道比賽,兩車從起點(diǎn)同時(shí)出發(fā),A車到達(dá)終點(diǎn)時(shí),B車離終點(diǎn)還差12米,A車的平均速度為2.5米/秒.
(1)求B車的平均速度;
(2)如果兩車重新比賽,A車從起點(diǎn)退后12米,兩車能否同時(shí)到達(dá)終點(diǎn)?請(qǐng)說明理由;
(3)在(2)的條件下,若調(diào)整A車的平均速度,使兩車恰好同時(shí)到達(dá)終點(diǎn),求調(diào)整后A車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,OA=2cm,OA⊥OB,AC交OB于D點(diǎn),AD=2CD.
(1)求∠BOC的度數(shù);
(2)求線段BD、線段CD和 BC圍成的圖形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com