【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交ACABE,F點(diǎn),若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則CDM的周長的最小值為_____

【答案】9

【解析】

連接ADAM,由于ABC是等腰三角形,點(diǎn)DBC邊的中點(diǎn),故ADBC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)A關(guān)于直線EF的對稱點(diǎn)為點(diǎn)C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.

連接ADMA

∵△ABC是等腰三角形,點(diǎn)DBC邊的中點(diǎn),

ADBC

SABCBCAD×6×AD18,解得AD6

EF是線段AC的垂直平分線,

∴點(diǎn)A關(guān)于直線EF的對稱點(diǎn)為點(diǎn)C,MAMC

MC+DMMA+DMAD,

AD的長為CM+MD的最小值,

∴△CDM的周長最短=(CM+MD+CDAD+BC6+×66+39

故答案為:9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,EAB的中點(diǎn),過點(diǎn)EECOA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.

(1)求證:DB=DE;

(2)若AB=12,BD=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)是正比例函數(shù)與反比例函數(shù)的圖象在第一象限的交點(diǎn),軸,垂足為點(diǎn),的面積是2.

1)求的值以及這兩個(gè)函數(shù)的解析式;

2)若點(diǎn)軸上,且是以為腰的等腰三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn),△PAB,△PMN都是等邊三角形,連接BN,

(1)M點(diǎn)如圖1的位置時(shí),如果AM=5,BN的長;

(2)M點(diǎn)在如圖2位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系__________________;

(3)M點(diǎn)在如圖3位置時(shí),當(dāng)BM=AB時(shí),證明:MNAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索與證明:

(1)如圖1,直線經(jīng)過正三角形的項(xiàng)點(diǎn),在直線上取兩點(diǎn),,使得,.通過觀察或測量,猜想線段,之間滿足的數(shù)量關(guān)系,并子以證明:

(2)(1)中的直線繞著點(diǎn)逆時(shí)針方向旋轉(zhuǎn)一個(gè)角度到如圖2的位置,并使.通過觀察或測量,猜想線段,之間滿足的數(shù)量關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有(  )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°,∠B30°,分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長為半徑作弧,兩弧相交于M、N兩點(diǎn),作直線MN,交BC于點(diǎn)D,連接AD

1)根據(jù)作圖判斷:ABD的形狀是   ;

2)若BD10,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1均為等邊三角形,點(diǎn)的延長線上,連接,求證:

2)類比探究:如圖2均為等腰直角三角形,,點(diǎn)在邊的延長線上,連接.請判斷:①的度數(shù)為_________.②線段之間的數(shù)量關(guān)系是_________

3)問題解決:在(2)中,如果,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘 米,乙在地時(shí)距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)關(guān)系式.

(3)登山多長時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

同步練習(xí)冊答案