【題目】如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADB+∠EDC=120°.
(1)求證:△ABD∽△DCE;
(2)若BD=4,CE=3,求△ABC的面積.
【答案】(1)證明見解析;(2)
【解析】
(1)根據(jù)等邊三角形性質(zhì)求出∠B=∠C=60°,由∠ADB+∠EDC=120°,根據(jù)等式性質(zhì)求出∠BAD=∠CDE,即可證明△ABD∽△DCE;
(2)由(1)知道△ABD∽△DCE,對應(yīng)邊成比例得出,列方程解答即可.
(1)證明:∵△ABC是等邊三角形,
∴∠B=∠C=60°,AB=AC,
∴∠BAD+∠ADB=120°,
又∵∠ADB+∠EDC=120°,
∴∠BAD=∠EDC,
∴△ABD∽△DCE.
(2)由(1)△ABD∽△DCE可得:,
∴,
∴4(AB-4)=3AB,
∴AB=16.
過點A作AF⊥BC于F,則BF=BC=8,
在Rt△ABF中,AF==,
∴△ABC的面積為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(圖4).把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面長為34米的墻,用鐵柵欄圍成一個矩形自行車場地ABCD,在AB和BC邊各有一個2米寬的小門(不用鐵柵欄).設(shè)矩形ABCD的邊AD長為x米,AB長為y米,矩形的面積為S平方米,且x<y.
(1)若所用鐵柵欄的長為40米,求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)在(1)的條件下,求S與x的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場地的面積為192平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點坐標(biāo)分別為O(0,0),A(12,0),B(8,6),C(0,6).動點P從點O出發(fā),以每秒3個單位長度的速度沿邊向OA終點A運(yùn)動;動點Q從點B同時出發(fā),以每秒2個單位長度的速度沿邊BC向終點C運(yùn)動.設(shè)運(yùn)動的時間為t秒,PQ=y.
(1)直接寫出y關(guān)于t的函數(shù)解析式及t的取值范圍: ;
(2)當(dāng)PQ=3時,求t的值;
(3)連接OB交PQ于點D,若雙曲線經(jīng)過點D,問k的值是否變化?若不變化,請求出k的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點P從點A開始沿AB邊向點B以1 cm/s的速度移動,同時點Q從點B開始沿BC向點C以2cm/s的速度移動.當(dāng)一個點到達(dá)終點時另一點也隨之停止運(yùn)動,運(yùn)動時間為x秒(x>0).
(1)求幾秒后,PQ的長度等于5 cm.
(2)運(yùn)動過程中,△PQB的面積能否等于8 cm2?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末小明勻速步行趕往學(xué)校參加學(xué)校組織的植樹活動,小明從家出發(fā)30分鐘后,忽然想起沒有帶植樹工具,于是馬上掉頭往回走行走速度比之前提高了1千米/時(仍保持勻速步行),同時小明打電話給爸爸,請爸爸幫他把植樹工具送過來,從小明開始打電話到爸爸出門一共用了4分鐘,爸爸的行走速度與此時小明的行走速度相同,兩人相遇后,小明立即趕往學(xué)校,爸爸則轉(zhuǎn)身回家,兩人速度均保持不變,爸爸在回家途中用了10分鐘吃早餐,然后立即回家,當(dāng)爸爸到家時小明剛好到達(dá)學(xué)校.爸爸和小明相距的路程y(千米)與小明從家出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示,求今天早上小明從家到學(xué)校途中行走的總路程是________千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),拋物線與x軸交于點A,C(點A在點C的左側(cè)),與y軸交于點B,頂點為D.點Q為線段BC的三等分點(靠近點C).
(1)點M為拋物線對稱軸上一點,點E為對稱軸右側(cè)拋物線上的點且位于第一象限,當(dāng)的周長最小時,求面積的最大值;
(2)在(1)的條件下,當(dāng)的面積最大時,過點E作軸,垂足為N,將線段CN繞點C順時針旋轉(zhuǎn)90°得到點N,再將點N向上平移個單位長度.得到點P,點G在拋物線的對稱軸上,請問在平面直角坐標(biāo)系內(nèi)是否存在一點H,使點D,P,G,H構(gòu)成菱形.若存在,請直接寫出點H的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=﹣x+3與兩坐標(biāo)軸圍成一個△AOB.現(xiàn)將背面完全相同,正面分別標(biāo)有數(shù)1、2、3、、的5張卡片洗勻后,背面朝上,從中任取一張,將該卡片上的數(shù)作為點P的橫坐標(biāo),再在剩下的4張卡片中任取一張,將該卡片上的數(shù)作為點P的縱坐標(biāo).
(1)請用樹狀圖或列表求出點P的坐標(biāo).
(2)求點P落在△AOB內(nèi)部的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=的圖象經(jīng)過A,點A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過點A,在第一象限內(nèi)的點B在這個反比例函數(shù)圖象上,過點B做BC∥x軸,交y軸于點C,且AC=AB,求:
(1)這個反比例函數(shù)的解析式;
(2)ΔABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com