【題目】周末小明勻速步行趕往學(xué)校參加學(xué)校組織的植樹活動,小明從家出發(fā)30分鐘后,忽然想起沒有帶植樹工具,于是馬上掉頭往回走行走速度比之前提高了1千米/時(仍保持勻速步行),同時小明打電話給爸爸,請爸爸幫他把植樹工具送過來,從小明開始打電話到爸爸出門一共用了4分鐘,爸爸的行走速度與此時小明的行走速度相同,兩人相遇后,小明立即趕往學(xué)校,爸爸則轉(zhuǎn)身回家,兩人速度均保持不變,爸爸在回家途中用了10分鐘吃早餐,然后立即回家,當(dāng)爸爸到家時小明剛好到達學(xué)校.爸爸和小明相距的路程y(千米)與小明從家出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示,求今天早上小明從家到學(xué)校途中行走的總路程是________千米.
【答案】
【解析】
根據(jù)第一段圖象知小明30分鐘走2千米,求出上學(xué)速度為4km/h;小明返回家取東西的速度5km/h,在返回途中共用時間小時,在返回途中共走了km,爸爸在途中走了km;爸爸返回家共用時間為小時,小明到校時間為小時,小明從相遇到學(xué)校走了km;然后求和即可.
從圖象看小明30分鐘走2千米,速度為4km/h,
掉頭后速度為5km/h,
4分鐘行走了5×km,
和爸爸相遇用的時間為(2-)÷(5+5)=小時,
小明在返回途中共走了km,
爸爸在途中走了km,
爸爸返回家共用時間為小時,
小明到校時間為小時,則小明從相遇到學(xué)校走了km,
小明共走了2+km;
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 拋物線與軸交于點A(-1,0),頂點坐標(biāo)(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為
A. 1 個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖像過面積等于8的長方形的對角線的中點,為函數(shù)圖像上任意一點.則的最小值為( )
A.1B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去…若點A(,0),B(0,2),則點B2018的坐標(biāo)為( 。
A. (6048,0)B. (6054,0)C. (6048,2)D. (6054,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)C1:y1=ax2+2ax+a-1(a≠0).
(1)把二次函數(shù)C1的表達式化成y=a(x-h)2+b(a≠0)的形式 ,并寫出頂點坐標(biāo) ;
(2)已知二次函數(shù)C1的圖象經(jīng)過點A(-3,1).
①a的值 ;
②點B在二次函數(shù)C1的圖象上,點A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,則k的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山,就是金山銀山”,為了改善生態(tài)環(huán)境,某縣政府準(zhǔn)備對境內(nèi)河流進行清淤、疏通河道,同時在人群密集區(qū)沿河流修建濱河步道,打造生態(tài)濕地公園.
(1)2018年11月至12月,一期工程原計劃疏通河道和修建濱河步道里程數(shù)共計20千米,其中修建濱河步道里程數(shù)是疏通河道里程數(shù)的倍,那么,原計劃修建濱河步道多少千米?
(2)至2018年12月底,一期工程順利按原計劃完成總共耗資840萬元,其中疏通河道工程共耗資600萬元;2019年二期工程開工后,疏通河道每千米工程費用較一期降低2.5a%,里程數(shù)較一期增加3a%;修建濱河步道每千米工程費用較一期上漲2.5a%,里程數(shù)較一期增加5a%,經(jīng)測算,二期工程總費用將比一期增加2a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)為常數(shù),中的與的部分對應(yīng)值如下表:
x | -1 | 0 | 3 |
y | n | -3 | -3 |
當(dāng)時,下列結(jié)論中一定正確的是________(填序號即可)
①;②當(dāng)時,的值隨值的增大而增大;③;④當(dāng)時,關(guān)于的一元二次方程的解是,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC沿BC所在直線平移得到△DEF.
(1)如圖①,當(dāng)點E移動到點C處時,連接AD,求證:△CDA≌△ABC;
(2)如圖②,當(dāng)點E移動到BC中點時,連接AD、AE、CD,請你判斷四邊形AECD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1與x軸相交于點A,B,與y軸相交于點C,點A的坐標(biāo)為(﹣1,0),對稱軸為直線x=1.
(1)求點B的坐標(biāo)及拋物線的解析式;
(2)在直線BC上方的拋物線上有一點P,使△PBC的面積為1,求出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com