【題目】如圖所示,△OAB中,OA=OB=10,∠AOB=80°,以點O為圓心,6為半徑的優(yōu)弧分別交OA、OB于點M、N.
(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉80°得OP′. 求證:AP = BP′;
(2)點T在左半弧上,若AT與弧相切于點T,求點T到OA的距離;
(3)設點Q在優(yōu)弧上,當△AOQ的面積最大時,直接寫出∠BOQ的度數(shù).
【答案】(1)根據(jù)已知得出∠AOP=∠BOP′,從進而由SAS得出△AOP≌△BOP′,即可得出答案。
(2)
(3)10°或170°
【解析】試題分析:(1)首先根據(jù)已知得出∠AOP=∠BOP′,進而得出△AOP≌△BOP′,即可得出答案;
(2)利用切線的性質得出∠ATO=90°,再利用勾股定理求出AT的長,進而得出TH的長即可得出答案;
(3)當OQ⊥OA時,△AOQ面積最大,且左右兩半弧上各存在一點分別求出即可.
試題解析:(1)如圖1,
∵∠AOP=∠AOB+∠BOP=80°+∠BOP,
∠BOP′=∠POP′+∠BOP=80°+∠BOP,
∴∠AOP=∠BOP′,
∵在△AOP和△BOP′中
∴△AOP≌△BOP′(SAS),
∴AP=BP′;
(2)如圖1,連接OT,過點T作TH⊥OA于點H,
∵AT與弧MN相切,
∴∠ATO=90°,
∴AT===8,
∵×OA×TH=×AT×OT,
即×10×TH=×8×6,
解得:TH=,即點T到OA的距離為;
(3)如圖2,當OQ⊥OA時,△AOQ的面積最大;
理由:∵OQ⊥OA,
∴QO是△AOQ中最長的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,
當Q點在優(yōu)弧MN右側上,
∵OQ⊥OA,
∴QO是△AOQ中最長的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,
綜上所述:當∠BOQ的度數(shù)為10°或170°時,△AOQ的面積最大.
科目:初中數(shù)學 來源: 題型:
【題目】某班5位學生參加中考體育測試的成績(單位:分)分別是35、40、37、38、40.則這組數(shù)據(jù)的眾數(shù)是( )
A.37
B.40
C.38
D.35
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F(xiàn)是四邊形ABCD的對角線AC上兩點,AF=CE,DF=BE,DF∥BE. 求證:
(1)△AFD≌△CEB;
(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某科技館對學生參觀實行優(yōu)惠,個人票為每張6元,另有團體票可售,票價45元,每票最多限10人入館參觀.
(1)如果參觀的學生人數(shù)36人,至少應付多少元?
(2)如果參觀的學生人數(shù)為48人,至少應付多少元?
(3)如果參觀的學生人數(shù)為一個兩位數(shù) (a表示十位上的數(shù)字,b表示個位上的數(shù)字),用含a、b的代數(shù)式表示至少應付給科技館的總金額.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請根據(jù)圖中提供的信息,回答下列問題:
(1)一個水瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和20個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】包括中國志愿者王躍在內的6名志愿者踏上了為期12480小時的“火星之旅”.將12480用科學記數(shù)法表示應為( 。
A. 12.48×103 B. 0.1248×105 C. 1.248×104 D. 1.248×103
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自開展“學生每天鍛煉1小時”活動后,我市某中學根據(jù)學校實際情況,決定開設A:毽子,B:籃球,C:跑步,D:跳繩四種運動項目.為了了解學生最喜歡哪一種項目,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖統(tǒng)計圖.請結合圖中信息解答下列問題:
(1)該校本次調查中,共調查了多少名學生?
(2)請將兩個統(tǒng)計圖補充完整;
(3)在本次調查的學生中隨機抽取1人,他喜歡“跑步”的概率有多大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com