【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個(gè)無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).當(dāng)豎直擺放圓柱形桶至少( )個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).
A.7B.8C.9D.10
【答案】B
【解析】
以拋物線的對(duì)稱軸為y軸,水平地面為x軸,建立平面直角坐標(biāo)系,設(shè)解析式,結(jié)合已知確定拋物線上點(diǎn)的坐標(biāo),代入解析式確定拋物線的解析式;由圓桶的直徑,求出圓桶兩邊緣縱坐標(biāo)的值,確定m的范圍,根據(jù)m為正整數(shù),得出m的值,即可得到當(dāng)網(wǎng)球可以落入桶內(nèi)時(shí),豎直擺放圓柱形桶個(gè)數(shù).
以點(diǎn)O為原點(diǎn),AB所在直線為x軸建立直角坐標(biāo)系,
M(0,5),B(2,0),C(1,0),D(,0)
設(shè)拋物線的解析式為,
拋物線過點(diǎn)M和點(diǎn)B,
則k=5,a=
∴拋物線解析式為:;
當(dāng)x=1時(shí),y=,P(1,)
當(dāng)x=時(shí),y=,Q(,)
設(shè)豎直擺放圓柱形桶m個(gè)時(shí)網(wǎng)球可以落入桶內(nèi),
由題意,得, m,
解得:m;
∵m為整數(shù),
∴m的值為8,9,10,11,12.
∴m的當(dāng)豎直擺放圓柱形桶至少8個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得到線段ED,分別以O、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m為實(shí)數(shù)).
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;
(2)若m是整數(shù),且方程有兩個(gè)不相等的整數(shù)根,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周老師為了了解學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半年的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類A:優(yōu);B:良;C:中;D:差.依據(jù)調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,周老師一共調(diào)查了______名學(xué)生;
(2)將統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,周老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一對(duì)一”幫扶,請(qǐng)用列表法或畫樹形圖的方法求所選的兩位同學(xué)恰好是兩位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售一種文具袋,成本為30元/件,每天的銷售量(件)與銷售單價(jià)(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天的銷量不低于240件,那么當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x與二次函數(shù)y=﹣x2+bx+c的圖象相交于原點(diǎn)O和另一點(diǎn)A(4,﹣4).
(1)求二次函數(shù)表達(dá)式;
(2)直線x=m和x=m+2分別交線段AO于C、D,交二次函數(shù)y=﹣x2+bx+c的圖象于點(diǎn)E、F,當(dāng)m為何值時(shí),四邊形CEFD是平行四邊形;
(3)在第(2)題的條件下,設(shè)CE與x軸的交點(diǎn)為M,將△COM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到△C′OM′,當(dāng)C′、M′、F三點(diǎn)第一次共線時(shí),請(qǐng)畫出圖形并直接寫出點(diǎn)C′的縱坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=3,BC=4,AC為對(duì)角線,∠DAC的角平分線AE交DC于點(diǎn)E,則CE的長為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com