【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)在x正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
【答案】D
【解析】求出AB的坐標(biāo),設(shè)直線AB的解析式是y=kx+b,把A、B的坐標(biāo)代入求出直線AB的解析式,根據(jù)三角形的三邊關(guān)系定理得出在△ABP中,|AP-BP|<AB,延長(zhǎng)AB交x軸于P′,當(dāng)P在P′點(diǎn)時(shí),PA-PB=AB,此時(shí)線段AP與線段BP之差達(dá)到最大,求出直線AB于x軸的交點(diǎn)坐標(biāo)即可.
∵把A(,y1),B(2,y2)代入反比例函數(shù)y=得:y1=2,y2=,
∴A(,2),B(2,),
∵在△ABP中,由三角形的三邊關(guān)系定理得:|AP-BP|<AB,
∴延長(zhǎng)AB交x軸于P′,當(dāng)P在P′點(diǎn)時(shí),PA-PB=AB,
即此時(shí)線段AP與線段BP之差達(dá)到最大,
設(shè)直線AB的解析式是y=kx+b,
把A、B的坐標(biāo)代入得:
,
解得:k=-1,b=,
∴直線AB的解析式是y=-x+,
當(dāng)y=0時(shí),x=,
即P(,0),
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)解方程:;
(2)列分式方程解應(yīng)用題:
用電腦程序控制小型賽車進(jìn)行比賽,“暢想號(hào)”和“逐夢(mèng)號(hào)”兩賽車進(jìn)入了最后的決賽.比賽中,兩車從起點(diǎn)同時(shí)出發(fā),“暢想號(hào)”到達(dá)終點(diǎn)時(shí),“逐夢(mèng)號(hào)”離終點(diǎn)還差.從賽后數(shù)據(jù)得知兩車的平均速度相差.求“暢想號(hào)”的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為6,面積是18,腰AC的垂直平分線EF分別交AC,AB于E,F點(diǎn),若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△CDM的周長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形場(chǎng)地,點(diǎn)E在DC的延長(zhǎng)線上,AE與BC相交于點(diǎn)F,有甲、乙、丙三名同學(xué)同時(shí)從點(diǎn)A出發(fā),甲沿著A﹣B﹣F﹣C的路徑行走至C,乙沿著A﹣F﹣E﹣C﹣D的路徑行走至D,丙沿著A﹣F﹣C﹣D的路徑行走至D,若三名同學(xué)行走的速度都相同,則他們到達(dá)各自的目的地的先后順序(由先至后)是( )
A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為的正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)度后得到正方形,邊與交于點(diǎn),則四邊形的周長(zhǎng)是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)y1>y2時(shí),試比較x1與x2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形紙片中,,,點(diǎn)(不與,重合)是上任意一點(diǎn),將此三角形紙片按下列方式折疊,若的長(zhǎng)度為,則的周長(zhǎng)為__________.(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3)、B(﹣2,﹣2)、C(4,﹣2),則△ABC外接圓半徑的長(zhǎng)度為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com