【題目】把下列各數(shù)填入對(duì)應(yīng)的橫線內(nèi):

38,4.8,+84,3.1416,0,2008,-,-0.142,95%+

非負(fù)整數(shù):______________________________________________________________

負(fù)整數(shù):______________________________________________________________

正分?jǐn)?shù):_____________________________________________________________

負(fù)有理數(shù):______________________________________________________________

【答案】見解析

【解析】

根據(jù)有理數(shù)的分類方法即可求解.

依題意得

非負(fù)整數(shù):+840,2008,

負(fù)整數(shù):-38,

正分?jǐn)?shù):4.8,3.141695%,+

負(fù)有理數(shù):-38,-,-0.142

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,把ABC 先沿 x 軸翻折,再向右平移 3 個(gè)單位得到ABC 現(xiàn)把這兩步 操作規(guī)定為一種變換.如圖,已知等邊三角形 ABC 的頂點(diǎn) B、C 的坐標(biāo)分別是(11)、(3,1), 把三角形經(jīng)過(guò)連續(xù) 5 次這種變換得到三角形ABC,則點(diǎn) A 的對(duì)應(yīng)點(diǎn) A 的坐標(biāo)是(

A.5,﹣B.14,1+C.17,﹣1D.20,1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形ABCD是平行四邊形,AC、BD交于點(diǎn)O,∠1=∠2

1)求證:四邊形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,有一條線段AB,已知點(diǎn)A(﹣3,0)和B(0,4),平移線段AB得到線段A1B1.若點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(0,﹣1),則線段AB平移經(jīng)過(guò)的區(qū)域(四邊形ABB1A1)的面積為( 。

A. 12 B. 15 C. 24 D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推廣陽(yáng)光體育大課間活動(dòng),我市某中學(xué)決定在學(xué)生中開設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:

1在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?

2請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡立定跳遠(yuǎn)的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

3若調(diào)查到喜歡跳繩5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1;

2

3

4;

5

6;

7

8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD,AB=8,BC=6,以點(diǎn)A為圓心,5為半徑作圓,點(diǎn)M為圓A上一動(dòng)點(diǎn),連接CM,DM,則CM+MD的最小值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù)a,b,c滿足a>b>c(ac<0),且|c|<|b|<|a|,則|x-a|+|x+b|+|x-c|的最小值為(

A. B. |b| C. a+b D. -c-a

查看答案和解析>>

同步練習(xí)冊(cè)答案