【題目】如圖,在平面直角坐標(biāo)系中,△ABC 的一邊 AB x 軸上,∠ABC=90°,點(diǎn) C(4,8) 在第一象限內(nèi),AC y 軸交于點(diǎn) E,拋物線 y=+bx+c 經(jīng)過(guò) A、B 兩點(diǎn),與 y 軸交于點(diǎn) D(0,﹣6).

(1)請(qǐng)直接寫(xiě)出拋物線的表達(dá)式;

(2)求 ED 的長(zhǎng);

(3)若點(diǎn) M x 軸上一點(diǎn)(不與點(diǎn) A 重合),拋物線上是否存在點(diǎn) N,使∠CAN=∠MAN.若存在,請(qǐng)直接寫(xiě)出點(diǎn) N 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=x﹣6;(2);(3) S=﹣m2+m+26(﹣2<m<4);(4)滿足條件的N點(diǎn)坐標(biāo)為(,);(,﹣).

【解析】1)先確定B(4,0),再利用待定系數(shù)法求出拋物線解析式為y=x2-x-6;

(2)先利用待定系數(shù)法求得直線AC的解析式為y=x+,則可確定E(0,),然后計(jì)算DE的長(zhǎng);

(3)如圖2,當(dāng)點(diǎn)Mx的正半軸,ANBCF,作FH⊥ACH,根據(jù)角平分線的性質(zhì)得FH=FB,易得AH=AB=6,再利用∠ACB的余弦可求出CF=5,則F(4,3),接著求出直線AF的解析式為y=x+1,于是通過(guò)解方程組,N點(diǎn)坐標(biāo)為();當(dāng)點(diǎn)M′在x的負(fù)半軸上時(shí),AN′交y軸與G,先在證明∴Rt△OAG∽R(shí)t△BFA,在利用相似比求出OG=4,所以G(0,-4),接下來(lái)利用待定系數(shù)法求出直線AG的解析式為y=-2x-4,然后解方程組N′的坐標(biāo).

(1)∵BC⊥x軸,點(diǎn)C(4,8),

∴B(4,0),

把B(4,0),C(0,﹣6)代入y=+bx+c得解得,

∴拋物線解析式為y=x﹣6;

(2)設(shè)直線AC的解析式為y=px+q,

把A(﹣2,0),C(4,8)代入得,解得,

∴直線AC的解析式為y=x+

當(dāng)x=0時(shí),y=x+=,則E(0,),

∴DE=+6=

(3)如圖2,當(dāng)點(diǎn)M在x的正半軸,AN交BC于F,作FH⊥AC于H,

則FH=FB,

易得AH=AB=6,

∵AC=

∴CH=10﹣6=4,

∵cos∠ACB=

∴CF=,

∴F(4,3),

易得直線AF的解析式為y=x+1,

解方程組,

∴N點(diǎn)坐標(biāo)為(,);

當(dāng)點(diǎn)M′在x的負(fù)半軸上時(shí),AN′交y軸與G,

∵∠CAN′=∠M′AN′,

∴∠KAM′=∠CAK,

而∠CAN=∠MAN,

∴∠KAC+∠CAN=90°,

而∠MAN+∠AFB=90°,

∴∠KAC=∠AFB,

而∠KAM′=∠GAO,

∴∠GAO=∠AFB,

∴Rt△OAG∽R(shí)t△BFA,

,即,解得OG=4,

∴G(0,﹣4),

易得直線AG的解析式為y=﹣2x﹣4,

解方程組

∴N′的坐標(biāo)為(,﹣),

綜上所述,滿足條件的N點(diǎn)坐標(biāo)為(,);(,﹣).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師購(gòu)買(mǎi)了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問(wèn)題:

①寫(xiě)出用含x、y的整式表示的地面總面積;

②若x=4m,y=1.5m,鋪1m2地磚的平均費(fèi)用為80元,求鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,,,,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F

1)求證:四邊形BDFC是平行四邊形;

2)若,求四邊形ABCF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(背景知識(shí))

數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為,則兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.

(問(wèn)題情境)

如圖,數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為8,點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒(.

(綜合運(yùn)用)

1)填空:

、兩點(diǎn)之間的距離________,線段的中點(diǎn)表示的數(shù)為__________.

②用含的代數(shù)式表示:秒后,點(diǎn)表示的數(shù)為____________;點(diǎn)表示的數(shù)為___________.

③當(dāng)_________時(shí),、兩點(diǎn)相遇,相遇點(diǎn)所表示的數(shù)為__________.

2)當(dāng)為何值時(shí),.

3)若點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),點(diǎn)在運(yùn)動(dòng)過(guò)程中,線段的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,的中點(diǎn),是邊上一動(dòng)點(diǎn),連結(jié),取的中點(diǎn),連結(jié).小夢(mèng)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)的面積與的長(zhǎng)度之間的關(guān)系進(jìn)行了探究:

1)設(shè)的長(zhǎng)度為,的面積,通過(guò)取邊上的不同位置的點(diǎn),經(jīng)分析和計(jì)算,得到了的幾組值,如下表:

0

1

2

3

4

5

6

3

1

0

2

3

根據(jù)上表可知,______,______.

2)在平面直角坐標(biāo)系中,畫(huà)出(1)中所確定的函數(shù)的圖象.

3)在(1)的條件下,令的面積為.

①用的代數(shù)式表示.

②結(jié)合函數(shù)圖象.解決問(wèn)題:當(dāng)時(shí),的取值范圍為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象

如圖所示,根據(jù)圖中提供的信息,有下列說(shuō)法:

①兩人相遇前,甲的速度小于乙的速度; ②出發(fā)后1小時(shí),兩人行程均為10km;

③出發(fā)后1.5小時(shí),甲的行程比乙多3km; ④甲比乙先到達(dá)終點(diǎn).

其中正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“春節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“湯圓”的習(xí)俗。某食品廠為了了解市民對(duì)去年銷(xiāo)量較好的肉餡(A)、豆沙餡(B)、菜餡(C)、三丁餡(D)四種不同口味湯圓的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整)。請(qǐng)根據(jù)以上信息回答:

(1)從全體學(xué)生的調(diào)查表中隨機(jī)抽取了多少名學(xué)生?

(2)將圖1和圖2補(bǔ)充完整;

(3)2中表示“A”的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分9分如圖,ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點(diǎn)分別為D,E,

1試判斷ABC的形狀,并說(shuō)明理由;

2已知半圓的半徑為5BC=12,的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是線段上一點(diǎn),,、兩點(diǎn)分別從、出發(fā)以、的速度沿直線向左運(yùn)動(dòng)(在線段上,在線段上),運(yùn)動(dòng)的時(shí)間為

1)當(dāng)時(shí),,請(qǐng)求出的長(zhǎng);

2)當(dāng)時(shí),,請(qǐng)求出的長(zhǎng);

3)若、運(yùn)動(dòng)到任一時(shí)刻時(shí),總有,請(qǐng)求出的長(zhǎng);

4)在(3)的條件下,是直線上一點(diǎn),且,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案