【題目】某校為了了解家長和學生參與“防溺水教育”的情況,在本校學生中隨機抽取部分學生作調查,把收集的數據分為以下4類情形:
A.僅學生自己參與 B.家長和學生一起參與
C.僅家長自己參與 D.家長和學生都未參與
請根據圖中提供的信息,解答下列問題:
(1)在這次抽樣調查中,共調查了_________名學生;
(2)補全條形統(tǒng)計圖,并在扇形統(tǒng)計圖中計算類所對應扇形的圓心角的度數.
(3)根據抽樣調查結果,估計該校1500名學生中“家長和學生都未參與”的人數.
科目:初中數學 來源: 題型:
【題目】如圖1,MN∥EF,C為兩直線之間一點.
(1)如圖1,若∠MAC與∠EBC的平分線相交于點D,若∠ACB=100°,求∠ADB的度數.
(2)如圖2,若∠CAM與∠CBE的平分線相交于點D,∠ACB與∠ADB有何數量關系?并證明你的結論.
(3)如圖3,若∠CAM的平分線與∠CBF的平分線所在的直線相交于點D,請直接寫出∠ACB與∠ADB之間的數量關系: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ΔABC中,AB=AC,點E,F在邊BC上,BE=CF,點D在AF的延長線上,AD=AC.
(1)求證:ΔABE≌ΔACF;
(2)若∠BAE=30°,則∠ADC= (直接寫答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,數軸上點、表示的有理數分別為-10、5,點是射線上的一個動點(不與點、重合),點是線段靠近點的三等分點,點是線段靠近點的三等分點.
(1)若點表示的有理數是0,那么的長為______;若點表示的有理數是1,那么的長為______.
(2)點在射線上運動(不與點、重合)的過程中,的長是否發(fā)生改變?若不改變,請求出的長;若改變,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使∠BOC=60°,將一直角三角板的直角頂點放在點O處,一邊ON在射線OB上,另一邊OM在直線AB的上方.
(1)在圖1中,∠COM= 度;
(2)將圖1中的三角板繞點O按逆時針方向旋轉,使得ON在∠BOC的內部,如圖2,若∠NOC=∠MOA,求∠BON的度數;
(3)將圖1中的三角板繞點O以每秒10°的速度沿逆時針方向旋轉一周,在旋轉的過程中,當直線ON恰好平分∠BOC時,旋轉的時間是 秒.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象關于y軸對稱且交y軸負半軸于點C,與x軸交于點A、B,已知AB=6,OC=4,⊙C的半徑為,P為⊙C上一動點.
(1)求出二次函數的解析式;
(2)是否存在點P,使得△PBC為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;
(3)連接PB,若E為PB的中點,連接OE,則OE的最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】京張高鐵是2022年北京冬奧會的重要交通保障設施. 如圖所示,京張高鐵起自北京北站,途經清河、沙河、呂平等站,終點站為張家口南站,全長174千米.
(1)根據資料顯示,京張高鐵的客運價格擬定為0. 4元(人·千米),可估計京張高鐵單程票價約為_________元(結果精確到個位);
(2)京張高鐵建成后,將是世界上第一條設計時速為350千米/時的高速鐵路. 乘高鐵從北京到張家口的時間將縮短至1小時,如果按此設計時速運行,那么每站(不計起始站和終點站)?康钠骄鶗r間是多少分鐘?(結果保留整數)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com