【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)當(dāng)∠ABE=30°時(shí),四邊形BEDF是菱形.
【解析】試題分析:(1)由矩形可得∠ABD=∠CDB,結(jié)合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根據(jù)AD∥BC即可得證;
(2)當(dāng)∠ABE=30°時(shí),四邊形BEDF是菱形,由角平分線知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,結(jié)合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得證.
試題解析:(1)∵四邊形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE=30°時(shí),四邊形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四邊形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四邊形BEDF是平行四邊形,∴四邊形BEDF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)學(xué)習(xí)網(wǎng)站為吸引更多人注冊(cè)加入,舉行了一個(gè)為期5天的推廣活動(dòng),在活動(dòng)期間,加入該網(wǎng)站的人數(shù)變化情況如下表所示:
時(shí)間 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
新加入人數(shù)(人) | 153 | 550 | 653 | b | 725 |
累計(jì)總?cè)藬?shù)(人) | 3353 | 3903 | a | 5156 | 5881 |
(1)表格中a= ,b= ;
(2)請(qǐng)把下面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)根據(jù)以上信息,下列說(shuō)法正確的是 (只要填寫(xiě)正確說(shuō)法前的序號(hào)).
①在活動(dòng)之前,該網(wǎng)站已有3200人加入;
②在活動(dòng)期間,每天新加入人數(shù)逐天遞增;
③在活動(dòng)期間,該網(wǎng)站新加入的總?cè)藬?shù)為2528人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【感受聯(lián)系】在初二的數(shù)學(xué)學(xué)習(xí)中,我們感受過(guò)等腰三角形與直角三角形的密切聯(lián)系.等腰三角形作底邊上的高線可轉(zhuǎn)化為直角三角形,直角三角形沿直角邊翻折可得到等腰三角形等等.
(1)【探究發(fā)現(xiàn)】某同學(xué)運(yùn)用這一聯(lián)系,發(fā)現(xiàn)了“30°角所對(duì)的直角邊等于斜邊的一半”.并給出了如下的部分探究過(guò)程,請(qǐng)你補(bǔ)充完整證明過(guò)程
已知:如圖,
在 △ 中, °, °.
求證: .
(2)【靈活運(yùn)用】該同學(xué)家有一張折疊方桌如圖①所示,方桌的主視圖如圖②.經(jīng)測(cè)得 , ,將桌子放平,兩條桌腿叉開(kāi)的角度 .
求:桌面與地面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45°,原題設(shè)其它條件不變.求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖① ,菱形中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿折線運(yùn)動(dòng)到點(diǎn)停止,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段運(yùn)動(dòng)到點(diǎn)停止,它們運(yùn)動(dòng)的速度相同.設(shè)點(diǎn)出發(fā)時(shí),的面積為 .已知與之間的函數(shù)關(guān)系.如圖 ②所示,其中為線段,曲線為拋物線的一部分,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)當(dāng)時(shí),的面積 (填“變”或“不變”);
(2)分別求出線段,曲線所對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)當(dāng)為何值時(shí),的面積是?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC與△CDE都是等邊三角形,且∠EBD=65°,則∠AEB的度數(shù)是( )
A.115°
B.120°
C.125°
D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形的對(duì)角線相交于點(diǎn),,,,.
(1)填空:與的數(shù)量關(guān)系為 ;
(2)求的值;
(3)將沿翻折,得到(如圖2),連接,與相交于點(diǎn).若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,以為直徑的交于點(diǎn),過(guò)點(diǎn)做于點(diǎn),延長(zhǎng)交的延長(zhǎng)線于點(diǎn),且.
(1)求證:是的切線;
(2)若,的半徑是3,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距300km,一輛貨車(chē)和一輛轎車(chē)先后從甲地出發(fā)向乙地. 如圖,線段OA表示貨車(chē)離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車(chē)離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象,解答下列問(wèn)題:
(1)線段CD表示轎車(chē)在途中停留了h;
(2)貨車(chē)的平均速度是km/h;
(3)求線段DE對(duì)應(yīng)的函數(shù)解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com