【題目】如圖1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F.
(1)直接寫出∠AFC的度數(shù): ;
(2)請你判斷并寫出FE與FD之間的數(shù)量關系;
(3)如圖2,在△ABC中,如果∠ACB不是直角,而(1)中的其它條件不變,試判斷線段AE、CD與AC之間的數(shù)量關系并說明理由.
【答案】(1)120°;(2)DF=EF,理由見解析;(3)AC=AE+CD,理由見解析.
【解析】
(1)根據(jù)角平分線的基本性質以及三角形內角和為180°即可得到答案;
(2)AC上截取CG=CD,證明△CFG≌△CFD,從而得到DF=GF,再證明△AFG≌△AFE,得到EF=GF,故DF=EF,得到答案;
(3)如圖3,在AC上截取AG=AE,可證明△EAF≌△GAF(SAS),可得到∠EFA=∠GFA,再證明△FDC≌△FGC(ASA),可得到CD=CG,∴AC=AG+CG=AE+CD.
(1)∵∠ACB=90°,∠B=60°,
∴∠BAC=90°﹣60°=30°,
∵AD、CE分別是∠BAC、∠BCA的平分線,
∴∠FAC=15°,∠FCA=45°,
∴∠AFC=180°﹣(∠FAC+∠ACF)=120°
(2) FE與FD之間的數(shù)量關系為:DF=EF.
理由:如圖2,在AC上截取CG=CD,
∵CE是∠BCA的平分線,
∴∠DCF=∠GCF,
在△CFG和△CFD中,
,
∴△CFG≌△CFD(SAS),
∴DF=GF.
∵∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,
∴∠FAC=∠BAC,∠FCA=∠ACB,且∠EAF=∠GAF,
∴∠FAC+∠FCA=(∠BAC+∠ACB)=(180°﹣∠B)=60°,
∴∠AFC=120°,
∴∠CFD=60°=∠CFG,
∴∠AFG=60°,
又∵∠AFE=∠CFD=60°,
∴∠AFE=∠AFG,
在△AFG和△AFE中,
,
∴△AFG≌△AFE(ASA),
∴EF=GF,
∴DF=EF;
(3)結論:AC=AE+CD.
理由:如圖3,在AC上截取AG=AE,
同(2)可得,△EAF≌△GAF(SAS),
∴∠EFA=∠GFA.
又由題可知,∠FAC=∠BAC,∠FCA=∠ACB,
∴∠FAC+∠FCA=(∠BAC+∠ACB)=(180°﹣∠B)=60°,
∴∠AFC=180°﹣(∠FAC+∠FCA)=120°,
∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,
∴∠CFG=∠CFD=60°,
同(2)可得,△FDC≌△FGC(ASA),
∴CD=CG,
∴AC=AG+CG=AE+CD.
科目:初中數(shù)學 來源: 題型:
【題目】小南身高為163cm,一張紙的厚度為0.09mm,現(xiàn)將這張紙連續(xù)對折(假設對折始終能成功),若連續(xù)對折次后,紙的厚度超過了小南的身高,那么的值最小是
A. 12 B. 13 C. 14 D. 15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據(jù)調查統(tǒng)計結果,繪制了不完整的統(tǒng)計圖.
請結合統(tǒng)計圖,回答下列問題:
(1)本次調查學生共人,a= , 并將條形圖補充完整;
(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?
(3)學校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4 ,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C′.
(1)求拋物線C的函數(shù)表達式;
(2)若拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,求m的取值范圍.
(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C′上的對應點P′,設M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電信公司推出一款移動話費套餐,資費標準見下表:
套餐月費/元 | 套餐內容 | 套餐外資費 | |
主叫限定時間/分鐘 | 被叫 | 主叫超時費 (元/分鐘) | |
58 | 50 | 免費 | 0.25 |
88 | 150 | 0.20 | |
118 | 350 | 0.15 | |
說明:①主叫:主動打電話給別人;被叫:接聽別人打進來的電話. ②若辦理的是月使用費為 58 元的套餐,主叫時間不超過 50 分鐘時,當月話費即 為 58 元;主叫時間為 60 分鐘,則當月話費為 58+0.25×(60-50)=60.5 元. |
小文辦理的是月使用費為 88 元的套餐,亮亮辦理的是月使用費為 118 元的套餐.
(1)小文當月的主叫時間為 220 分鐘,則該月她的話費需多少元?
(2)某月小文和亮亮的主叫時間都為 m 分鐘 (m 350) ,請用含 m 的代數(shù)式表示該月他們的 話費差.
(3)某月小文和亮亮的話費相同,但主叫時間比亮亮少 100 分鐘,求小文和亮亮的主叫時間 分別為多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長均為1,線段AB的端點在格點上,按要求畫出格點三角形,并求其面積.
(1)在圖①中畫出一個以 AB為腰的等腰三角形 ABC,其面積為____________.
(2) 在圖②中畫出一個以AB為底的等腰三角形ABC,其面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;
(1)直接寫出圖中∠AOC的對頂角為 ,∠BOE的鄰補角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災,“旱災無情人有情”.某單位給某鄉(xiāng)中小學捐獻一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運往該鄉(xiāng)中小學.已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運費400元,乙種貨車每輛需付運費360元.運輸部門應選擇哪種方案可使運費最少?最少運費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOM=90°,∠DON=90°.
(1)若∠COM=∠AOC,求∠AOD的度數(shù);
(2)若∠COM=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com