【題目】已知:在△ABC中,ABAC6,∠B30°,EBC上一點(diǎn),BE2EC,DEDC,∠ADC60°,則AD的長_____

【答案】2

【解析】

A點(diǎn)做AGBC,連接AE,可得△BAE為RT△,且∠AEB=60,∠AEC=120AE=CE,四邊形DAEC共圓,可得∠ADE=∠CDE=∠ADC=60°=30,過點(diǎn)A做AO⊥CD與O點(diǎn),可得△OAC為等腰直角三角形,可得OA的長,進(jìn)而求出AD的長.

解:如圖:

A點(diǎn)做AGBC,連接AE,AB=AC

GBC的中點(diǎn),在RTABG中,AB=AC=6,∠B=30°

∠ACB=30°,AG==3,BG=CG=,

BC=2BG=,

又BE=2EC,可得BE=,CE=,GE=

在RT△AGE中,AE===,

AE=CE=,

在△BAE中,AB=6,BE=,AE=,

可得

△BAE為RT△,∠BAE=90,

B=30,

∠AEB=60, ∠AEC=120,

在四邊形DAEC中,∠ADC=60°,∠AEC=120,

∠ADC+∠AEC=180°,

四邊形DAEC共圓,

AE=CE=

∠ADE=∠CDE=∠ADC=60°=30,

過點(diǎn)A做AO⊥CD與O點(diǎn),

在△DCE中,∠CDE=30,DE=DC

∠DCE==75,∠ACB=30

∠OCA=45,△OAC為等腰直角三角形

在RT△OAC中,AC=6,∠OCA=45AO= AC=,

在RT△AOD中, AO=,∠ADO=60,可得AD==.

故答案:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,D是⊙O的直徑BC上的一點(diǎn),過DDEBC交⊙OEN,F是⊙O上的一點(diǎn),過F的直線分別與CB、DE的延長線相交于AP,連結(jié)CFPDM,∠CP

1)求證:PA是⊙O的切線;

2)若∠A30°,⊙O的半徑為4DM1,求PM的長;

3)如圖2,在(2)的條件下,連結(jié)BFBM;在線段DN上有一點(diǎn)H,并且以H、DC為頂點(diǎn)的三角形與△BFM相似,求DH的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(14)Q(m,n)在函數(shù)y(k0)的圖象上,當(dāng)m1時(shí),過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A、B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、DQDPA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積(  )

A. 增大 B. 減小

C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5x5.5,另外每天還需支付其他各項(xiàng)費(fèi)用80元.

銷售單價(jià)x(元)

3.5

5.5

銷售量y(袋)

280

120

1)請直接寫出yx之間的函數(shù)關(guān)系式;

2)如果每天獲得160元的利潤,銷售單價(jià)為多少元?

3)設(shè)每天的利潤為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線ABy軸交于點(diǎn)C.

(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

(2)AOC的面積;

(3)求不等式kx+b-<0的解集(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知點(diǎn)A是雙曲線y=kx-1(k>0)上的一個(gè)動(dòng)點(diǎn),連AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊ABC,點(diǎn)C在第四象限.隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=mx-1(m<0)上運(yùn)動(dòng),則mk的關(guān)系是(

A. m= -kB. m=kC. m= -2kD. m= -3k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線ACBD于點(diǎn)E,AB=BCF為四邊形ABCD外一點(diǎn),且∠FCA=90°,CBF=DCB

1)求證:四邊形DBFC是平行四邊形;

2)如果BC平分∠DBF,CDB=45°,BD=2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017安徽。┤鐖D,游客在點(diǎn)A處做纜車出發(fā),沿ABD的路線可至山頂D處,假設(shè)ABBD都是直線段,且AB=BD=600m,α=75°,β=45°,求DE的長.

(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】社區(qū)利用一塊矩形空地建了一個(gè)小型的惠民停車場,其布局如圖所示.已知停車場的長為52米,寬為28米,陰影部分設(shè)計(jì)為停車位,要鋪花磚,其余部分是等寬的通道.已知鋪花磚的面積為640平方米.

1)求通道的寬是多少米?

2)該停車場共有車位64個(gè),據(jù)調(diào)查分析,當(dāng)每個(gè)車位的月租金為200元時(shí),可全部租出;當(dāng)每個(gè)車位的月租金每上漲10元,就會少租出1個(gè)車位.當(dāng)每個(gè)車位的月租金上漲多少元時(shí),停車場的月租金收入為14400元?

查看答案和解析>>

同步練習(xí)冊答案