【題目】已知:在△ABC中,AB=AC=6,∠B=30°,E為BC上一點(diǎn),BE=2EC,DE=DC,∠ADC=60°,則AD的長_____.
【答案】2
【解析】
過A點(diǎn)做AG⊥BC,連接AE,可得△BAE為RT△,且∠AEB=60,∠AEC=120,AE=CE,四邊形DAEC共圓,可得∠ADE=∠CDE=∠ADC=60°=30,過點(diǎn)A做AO⊥CD與O點(diǎn),可得△OAC為等腰直角三角形,可得OA的長,進(jìn)而求出AD的長.
解:如圖:
過A點(diǎn)做AG⊥BC,連接AE,AB=AC
G為BC的中點(diǎn),在RT△ABG中,AB=AC=6,∠B=30°
∠ACB=30°,AG==3,BG=CG=,
BC=2BG=,
又BE=2EC,可得BE=,CE=,GE=
在RT△AGE中,AE===,
AE=CE=,
在△BAE中,AB=6,BE=,AE=,
可得
△BAE為RT△,∠BAE=90,
∠B=30,
∠AEB=60, ∠AEC=120,
在四邊形DAEC中,∠ADC=60°,∠AEC=120,
∠ADC+∠AEC=180°,
四邊形DAEC共圓,
AE=CE=
∠ADE=∠CDE=∠ADC=60°=30,
過點(diǎn)A做AO⊥CD與O點(diǎn),
在△DCE中,∠CDE=30,DE=DC
∠DCE==75,∠ACB=30
∠OCA=45,△OAC為等腰直角三角形
在RT△OAC中,AC=6,∠OCA=45,AO= AC=,
在RT△AOD中, AO=,∠ADO=60,可得AD==.
故答案:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,D是⊙O的直徑BC上的一點(diǎn),過D作DE⊥BC交⊙O于E、N,F是⊙O上的一點(diǎn),過F的直線分別與CB、DE的延長線相交于A、P,連結(jié)CF交PD于M,∠C=∠P.
(1)求證:PA是⊙O的切線;
(2)若∠A=30°,⊙O的半徑為4,DM=1,求PM的長;
(3)如圖2,在(2)的條件下,連結(jié)BF、BM;在線段DN上有一點(diǎn)H,并且以H、D、C為頂點(diǎn)的三角形與△BFM相似,求DH的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,4)、Q(m,n)在函數(shù)y=(k>0)的圖象上,當(dāng)m>1時(shí),過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A、B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、D,QD交PA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積( )
A. 增大 B. 減小
C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他各項(xiàng)費(fèi)用80元.
銷售單價(jià)x(元) | 3.5 | 5.5 |
銷售量y(袋) | 280 | 120 |
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價(jià)為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知點(diǎn)A是雙曲線y=kx-1(k>0)上的一個(gè)動(dòng)點(diǎn),連AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊△ABC,點(diǎn)C在第四象限.隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=mx-1(m<0)上運(yùn)動(dòng),則m與k的關(guān)系是( )
A. m= -kB. m=kC. m= -2kD. m= -3k
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC⊥BD于點(diǎn)E,AB=BC,F為四邊形ABCD外一點(diǎn),且∠FCA=90°,∠CBF=∠DCB.
(1)求證:四邊形DBFC是平行四邊形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017安徽。┤鐖D,游客在點(diǎn)A處做纜車出發(fā),沿A﹣B﹣D的路線可至山頂D處,假設(shè)AB和BD都是直線段,且AB=BD=600m,α=75°,β=45°,求DE的長.
(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】社區(qū)利用一塊矩形空地建了一個(gè)小型的惠民停車場,其布局如圖所示.已知停車場的長為52米,寬為28米,陰影部分設(shè)計(jì)為停車位,要鋪花磚,其余部分是等寬的通道.已知鋪花磚的面積為640平方米.
(1)求通道的寬是多少米?
(2)該停車場共有車位64個(gè),據(jù)調(diào)查分析,當(dāng)每個(gè)車位的月租金為200元時(shí),可全部租出;當(dāng)每個(gè)車位的月租金每上漲10元,就會少租出1個(gè)車位.當(dāng)每個(gè)車位的月租金上漲多少元時(shí),停車場的月租金收入為14400元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com