【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF;EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為 .
【答案】6
【解析】解:如圖,連接BO,
∵四邊形ABCD是矩形,
∴DC∥AB,∠DCB=90°
∴∠FCO=∠EAO,
在△AOE和△COF中,
,
∴△AOE≌△COF,
∴OE=OF,OA=OC,
∵BF=BE,
∴BO⊥EF,∠BOF=90°,
∵∠FEB=2∠CAB=∠CAB+∠AOE,
∴∠EAO=∠EOA,
∴EA=EO=OF=FC=2,
在RT△BFO和RT△BFC中,
,
∴RT△BFO≌RT△BFC,
∴BO=BC,
在RT△ABC中,∵AO=OC,
∴BO=AO=OC=BC,
∴△BOC是等邊三角形,
∴∠BCO=60°,∠BAC=30°,
∴∠FEB=2∠CAB=60°,∵BE=BF,
∴△BEF是等邊三角形,
∴EB=EF=4,
∴AB=AE+EB=2+4=6.
所以答案是6.
【考點精析】本題主要考查了矩形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( 。
A.42 B.32 C.42 或 32 D.37 或 33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的分式方程
(1)若方程的增根為x=1,求m的值
(2)若方程有增根,求m的值
(3)若方程無解,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=AC=2,BC=.點D從B點開始運動到C點結(jié)束(點D和B、C均不重合),DE交AC于E,∠ADE=45°,當(dāng)△ADE是等腰三角形時,AE的長度為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)直角三角形有一個非常重要的性質(zhì)質(zhì):直角三角形斜邊上的中線等于斜邊的一半,比如:如圖1,Rt△ABC中,∠C=90°,D為斜邊AB中點,則CD=AD=BD=-AB.請你利用該定理和以前學(xué)過的知識解決下列問題:
在△ABC中,直線繞頂點A旋轉(zhuǎn).
(1)如圖2,若點P為BC邊的中點,點B、P在直線的異側(cè),BM⊥直線于點M,CN⊥直線于點N,連接PM、PN.求證:PM=PN;
(2)如圖3,若點B、P在直線的同側(cè),其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)如圖4,∠BAC=90°,直線旋轉(zhuǎn)到與BC垂直的位置,E為AB上一點且AE=AC,EN⊥于N,連接EC,取EC中點P,連接PM、PN,求證:PM⊥PN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,
連結(jié)AC、EF.在圖中找一個與△FAE全等的三角形,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線,四邊形ADBE是平行四邊形.
(1)求證:四邊形ADBE是矩形;
(2)求矩形ADBE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8.BC=6,點P以每秒1個單位的速度從
A向C運動,同時點Q以每秒2個單位的速度從A→B→C方向運動,它們到C點后都
停止運動,設(shè)點P、Q運動的時間為t秒.
(Ⅰ)在運動過程中,請你用t表示P、Q兩點間的距離,并求出P、Q兩點間的距離
的最大值;
(Ⅱ)經(jīng)過t秒的運動,求△ABC被直線PQ掃過的面積S與時間t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:
以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com