一個(gè)長方形的長為5
2
+2
5
,寬為5
2
-2
5
,則這個(gè)長方形的面積為
30
30
分析:由長與寬的乘積表示出長方形的面積,利用平方差公式計(jì)算即可得到結(jié)果.
解答:解:根據(jù)題意得:(5
2
+2
5
)×(5
2
-2
5
)=50-20=30,
則這個(gè)長方形的面積為30.
故答案為:30.
點(diǎn)評(píng):此題考查了二次根式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)小明在研究直角三角形的邊長時(shí),發(fā)現(xiàn)了下面的式子:
①當(dāng)三邊長分別為3、4、5時(shí),32+42=52;②當(dāng)三邊長分別為6、8、10時(shí),62+82=102;③當(dāng)三邊長分別為5、12、13時(shí),52+122=132; …
(1)從中小明發(fā)現(xiàn)了一個(gè)規(guī)律:在直角△ABC中,若∠B=90°,則它的三邊長滿足
 

(2)已知長方形ABCD中AB=8,BC=5,E是AB的中點(diǎn),點(diǎn)F在BC上,△DEF的面積為16,求點(diǎn)D到直線EF的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小杰和他的同學(xué)組成了“愛琢磨”學(xué)習(xí)小組,有一次,他們碰到這樣一道題:
“已知正方形ABCD,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,若EG⊥FH,則EG=FH“
經(jīng)過思考,大家給出了以下兩個(gè)方案:
(甲)過點(diǎn)A作AM∥HF交BC于點(diǎn)M,過點(diǎn)B作BN∥EG交CD于點(diǎn)N;
(乙)過點(diǎn)A作AM∥HF交BC于點(diǎn)M,作AN∥EG交CD的延長線于點(diǎn)N;
小杰和他的同學(xué)順利的解決了該題后,大家琢磨著想改變問題的條件,作更多的探索.

(1)對(duì)小杰遇到的問題,請(qǐng)?jiān)诩、乙兩個(gè)方案中任選一個(gè),加以證明(如圖1);
精英家教網(wǎng)
(2)如果把條件中的“正方形”改為“長方形”,并設(shè)AB=2,BC=3(如圖2),試探究EG、FH之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如果把條件中的“EG⊥FH”改為“EG與FH的夾角為45°”,并假設(shè)正方形ABCD的邊長為1,F(xiàn)H的長為
5
2
(如圖3),試求EG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小曼和他的同學(xué)組成了“愛琢磨”學(xué)習(xí)小組,有一次,他們碰到這樣一道題:“已知正方形ABCD,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,若EG⊥FH,則EG=FH.”為了解決這個(gè)問題,經(jīng)過思考,大家給出了以下兩個(gè)方案:
方案一:過點(diǎn)A作AM∥HF交BC于點(diǎn)M,過點(diǎn)B作BN∥EG交CD于點(diǎn)N;
方案二:過點(diǎn)A作AM∥HF交BC于點(diǎn)M,過點(diǎn)A作AN∥EG交CD于點(diǎn)N.…
(1)對(duì)小曼遇到的問題,請(qǐng)?jiān)诩、乙兩個(gè)方案中任選一個(gè)加以證明(如圖(1)).
(2)如果把條件中的“正方形”改為“長方形”,并設(shè)AB=2,BC=3(如圖(2)),是探究EG、FH之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)如果把條件中的“EG⊥FH”改為“EG與FH的夾角為45°”,并假設(shè)正方形ABCD的邊長為1,F(xiàn)H的長為
5
2
(如圖(3)),試求EG的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)長為4cm,寬為3cm的長方形木板在桌面上做無滑動(dòng)的翻滾(順時(shí)針方向),木板點(diǎn)A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點(diǎn)A滾到A2位置時(shí)共走過的路徑長為( 。

查看答案和解析>>

同步練習(xí)冊答案