【題目】如圖①,在菱形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線(xiàn)BCDB運(yùn)動(dòng).設(shè)點(diǎn)P經(jīng)過(guò)的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于(  )

A. B. C. 5D. 4

【答案】B

【解析】

連接ACBDO,根據(jù)圖②求出菱形的邊長(zhǎng)為4,對(duì)角線(xiàn)BD6,根據(jù)菱形的對(duì)角線(xiàn)互相垂直平分求出BO,再利用勾股定理列式求出CO,然后求出AC的長(zhǎng),再根據(jù)菱形的面積等于對(duì)角線(xiàn)乘積的一半求出菱形的面積,b為點(diǎn)PCD上時(shí)△ABP的面積,等于菱形的面積的一半,從而得解.

解:如圖,連接ACBDO

由圖②可知,BC=CD=4BD=14-8=6,

BO=BD=×6=3

RtBOC中,CO===

AC=2CO=2,

所以,菱形的面積=ACBD=×2×6=6,

當(dāng)點(diǎn)PCD上運(yùn)動(dòng)時(shí),△ABP的面積不變,為b,

所以,b=×6=3

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在中,為射線(xiàn)上一點(diǎn),連接于點(diǎn).

1)如圖1,若點(diǎn)與點(diǎn)重合,且,求的長(zhǎng);

2)如圖2,當(dāng)點(diǎn)邊上時(shí),過(guò)點(diǎn),延長(zhǎng),連接.求證:

3)如圖3,當(dāng)點(diǎn)在射線(xiàn)上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)的中點(diǎn),點(diǎn)邊上且,已知,請(qǐng)直接寫(xiě)出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)踐與操作:我們?cè)趯W(xué)習(xí)四邊形的相關(guān)知識(shí)時(shí),認(rèn)識(shí)了平行四邊形、矩形、菱形、正方形等一些特殊的四邊形,下面我們用尺規(guī)作圖的方法來(lái)體會(huì)它們之間的聯(lián)系.如圖,在□ABCD中,AB4,BC6,∠ABC60°,請(qǐng)完成下列任務(wù):

1)在圖1中作一個(gè)菱形,使得點(diǎn)A、B為所作菱形的2個(gè)頂點(diǎn),另外2個(gè)頂點(diǎn)在□ABCD的邊上;在圖2中作一個(gè)菱形,使點(diǎn)BD為所作菱形的2個(gè)頂點(diǎn),另外2個(gè)頂點(diǎn)在□ABCD的邊上;(尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)

2)請(qǐng)?jiān)趫D形下方橫線(xiàn)處直接寫(xiě)出你按(1)中要求作出的菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,AEBC,CFAD,EF分別為垂足.

1)求證:△ABE≌△CDF

2)求證:四邊形AECF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)甲、乙兩種型號(hào)的商品。每件甲種商品的進(jìn)價(jià)比每件乙種商品的進(jìn)價(jià)少2元,且用80元購(gòu)進(jìn)甲種商品的數(shù)量與用100元購(gòu)進(jìn)乙種商品的數(shù)量相同.

1)求甲、乙兩種商品每件的進(jìn)價(jià)各為多少元;

2)每件甲種商品售價(jià)為12元,每件乙種商品售價(jià)為15元,該超市本次購(gòu)進(jìn)甲種商品的數(shù)量比購(gòu)進(jìn)乙種商品的數(shù)量的3倍少5件,要使兩種商品全部售出后所獲總利潤(rùn)超過(guò)371元,求該超市本次至少購(gòu)進(jìn)乙種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,ADBC邊上的中線(xiàn),EAD上一動(dòng)點(diǎn),設(shè)DEnEA,連接CE并延長(zhǎng),交AB于點(diǎn)F

1)嘗試探究:如圖1,當(dāng)∠BAC90°,∠B30°DEEA時(shí),BFBA之間的數(shù)量關(guān)系是   ;

2)類(lèi)比延伸:如圖2,當(dāng)△ABC為銳角三角形,DEEA時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;

3)拓展遷移:如圖3,當(dāng)△ABC為銳角三角形,DEnEA時(shí),請(qǐng)直接寫(xiě)出BFBA之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)準(zhǔn)備舉辦一次演講比賽,每班限定兩人報(bào)名,初三(1)班的三位同學(xué)(兩位女生,一位男生)都想報(bào)名參加,班主任李老師設(shè)計(jì)了一個(gè)摸球游戲,利用已學(xué)過(guò)的概率知識(shí)來(lái)決定誰(shuí)去參加比賽,游戲規(guī)則如下:在一個(gè)不透明的箱子里放3個(gè)大小質(zhì)地完全相同的乒乓球,在這3個(gè)乒乓球上分別寫(xiě)上、(每個(gè)字母分別代表一位同學(xué),其中、分別代表兩位女生,代表男生),攪勻后,李老師從箱子里隨機(jī)摸出一個(gè)乒乓球,不放回,再次攪勻后隨機(jī)摸出第二個(gè)乒乓球,根據(jù)乒乓球上的字母決定誰(shuí)去參加比賽。

1)求李老師第一次摸出的乒乓球代表男生的概率;

2)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求恰好選定一名男生和一名女生參賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,的外接圓,是直徑,外一點(diǎn)且滿(mǎn)足,連接

1)求證:的切線(xiàn);

2)若,,,求的長(zhǎng);

3)如圖2,當(dāng)時(shí),交于點(diǎn),試寫(xiě)出、、之間的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知以的邊為直徑作的外接圓的平分線(xiàn),交,過(guò)的延長(zhǎng)線(xiàn)于

1)求證:切線(xiàn);

2)若的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案