【題目】如圖,小明為了測(cè)量小河對(duì)岸大樹BC的高度,他在點(diǎn)A測(cè)得大樹頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測(cè)得樹頂端點(diǎn)B的仰角為30°,且斜坡AF的坡比為1:2.求大樹BC的高度約為多少米?(≈1.732,結(jié)果精確到0.1)
【答案】約為15.3米
【解析】
作DH⊥AE于點(diǎn)H,作DG⊥BC于點(diǎn)G,如圖,由勾股定理得出.求出DH=CG=3m,則AH=2DH=6m,設(shè)BC=xm,則BG=(x﹣3)m,得出,解方程即可得出答案.
解:作DH⊥AE于點(diǎn)H,作DG⊥BC于點(diǎn)G,如圖,
則四邊形DGCH為矩形,
在Rt△ADH中,
∵,
∴AH=2DH,
∵AH2+DH2=AD2,
∴.
∴DH=CG=3m,
∴AH=2DH=6m,
設(shè)BC=xm,則BG=(x﹣3)m,
在Rt△BAC中,∠BAC=45°,
∴AC=BC=xm,
∴CH=DG=(x+6)m,
在Rt△BDG中,∠BDG=30°,
∵tan30°=,
∴,
解得,x=≈15.3.
答:大樹BC的高度約為15.3米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在菱形ABCD中,∠ABC=60°,P、Q是對(duì)角線BD上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)D出發(fā)沿BD方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)終點(diǎn)為B;點(diǎn)Q從點(diǎn)B出發(fā)沿著BD的方向以2cm/s的速度向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)終點(diǎn)為D.兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為x(s),以A、Q、C、P為頂點(diǎn)的圖形面積為y(cm2),y與x的函數(shù)圖像如圖②所示,根據(jù)圖像回答下列問題:
(1)BD= ,a= ;
(2)當(dāng)x為何值時(shí),以A、Q、C、P為頂點(diǎn)的圖形面積為4cm2?
(3)在整個(gè)運(yùn)動(dòng)的過程中,若△AQP為直角三角形,請(qǐng)直接寫出符合條件的所有x的值:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線l1,l2分別經(jīng)過點(diǎn)A(1,0),點(diǎn)B(﹣3,0),并且當(dāng)兩直線同時(shí)相交于y正半軸的點(diǎn)C時(shí),恰好有l1⊥l2,經(jīng)過點(diǎn)A、B、C的拋物線的對(duì)稱軸與直線l2交于點(diǎn)K,如圖所示.
(1)求點(diǎn)C的坐標(biāo),并求出拋物線的函數(shù)解析式;
(2)拋物線的對(duì)稱軸被直線l1,拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數(shù)量關(guān)系?請(qǐng)說明理由;
(3)當(dāng)直線l2繞點(diǎn)C旋轉(zhuǎn)時(shí),與拋物線的另一個(gè)交點(diǎn)為M,請(qǐng)找出使△MCK為等腰三角形的點(diǎn)M,簡述理由,并寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=AC,點(diǎn)E、F分別為邊AB、BC上的點(diǎn),且AE=BF,連接CE、AF交于點(diǎn)H,則下列結(jié)論:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AEAD=AHAF;其中結(jié)論正確的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,G是AD延長線上的一點(diǎn),且DG=AD,動(dòng)點(diǎn)M從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著A→C→G的路線向G點(diǎn)勻速運(yùn)動(dòng)(M不與A,G重合),設(shè)運(yùn)動(dòng)時(shí)間為t秒,連接BM并延長交AG于N.
(1)當(dāng)AM=_____________時(shí),△ABM是以AB為底邊的等腰三角形;
(2)當(dāng)點(diǎn)N在AD邊上時(shí),若BN⊥HN,NH交∠CDG的平分線于H,求證:BN=HN;
(3)過點(diǎn)M分別作AB,AD的垂線,垂足分別為E,F,矩形AEMF與△ACG重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并求S最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知在四邊形ABCD中,,,,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線B→A→D→C的方向以1個(gè)單位/秒的速度勻速運(yùn)動(dòng),整個(gè)運(yùn)動(dòng)過程中,△BCP的面積S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系如圖2所示,則AD的長為( )
A.5B.C.8D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)、是直線與反比例函數(shù)圖象的兩個(gè)交點(diǎn),軸于點(diǎn)C,己知點(diǎn)D(0,1),連接AD、BD、BC,
(1)求反比例函數(shù)和直線AB的表達(dá)式;
(2)根據(jù)函數(shù)圖象直接寫出當(dāng)時(shí)不等式的解集;
(3)設(shè)△ABC和△ABD的面積分別為、,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘漁船位于小島M的北偏東45°方向、距離小島180海里的A處,漁船從A處沿正南方向航行一段距離后,到達(dá)位于小島南偏東60°方向的B處.
(1)求漁船從A到B的航行過程中與小島M之間的最小距離(結(jié)果用根號(hào)表示):
(2)若漁船以20海里/小時(shí)的速度從B沿BM方向行駛,求漁船從B到達(dá)小島M的航行時(shí)間(結(jié)果精確到0.1小時(shí)).(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所研發(fā)了一種新藥,試驗(yàn)藥效時(shí)發(fā)現(xiàn):1.5小時(shí)內(nèi),血液中含藥量y(微克)與時(shí)間x(小時(shí))的關(guān)系可近似地用二次函數(shù)y=ax2+bx表示;1.5小時(shí)后(包括1.5小時(shí)),y與x可近似地用反比例函數(shù)y=(k>0)表示,部分實(shí)驗(yàn)數(shù)據(jù)如表:
時(shí)間x(小時(shí)) | 0.2 | 1 | 1.8 | … |
含藥量y(微克) | 7.2 | 20 | 12.5 | … |
(1)求a、b及k的值;
(2)服藥后幾小時(shí)血液中的含藥量達(dá)到最大值?最大值為多少?
(3)如果每毫升血液中含藥量不少于10微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時(shí)間.(≈1.41,精確到0.1小時(shí))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com