【題目】如圖,直線AB、CD相交于點O,下列條件中,不能說明AB⊥CD的是( )
A. ∠AOD=90°
B. ∠AOC=∠BOC
C. ∠BOC+∠BOD=180°
D. ∠AOC+∠BOD=180°
科目:初中數(shù)學 來源: 題型:
【題目】解決問題:
一輛貨車從超市出發(fā),向東走了3千米到達小彬家,繼續(xù)走2.5千米到達小穎家,然后向西走了10千米到達小明家,最后回到超市.
(1)以超市為原點,以向東的方向為正方向,用1個單位長度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.
(2)小明家距小彬家多遠?
(3)貨車一共行駛了多少千米?
(4)貨車每千米耗油0.2升,這次共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=2,E為AB上任意一動點,以CE為斜邊作等腰Rt△CDE,連接AD,下列說法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為 .其中,正確的結論是( )
A.①②④
B.①③⑤
C.②③④
D.①④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,將一副三角板的兩個銳角頂點放到一塊,∠AOB=45°,∠COD=30°,OM,ON分別是∠AOC,∠BOD的平分線.
(1)當∠COD繞著點O逆時針旋轉至射線OB與OC重合時(如圖②),則∠MON的大小為________;
(2)如圖③,在(1)的條件下,繼續(xù)繞著點O逆時針旋轉∠COD,當∠BOC=10°時,求∠MON的大小,寫出解答過程;
(3)在∠COD繞點O逆時針旋轉過程中,∠MON=________°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料226 kg,乙種原料250 kg,計劃利用這兩種原料生產(chǎn)A、B兩種的產(chǎn)品共40件,生產(chǎn)A、B兩種產(chǎn)品用料情況如下表:
若設生產(chǎn)A產(chǎn)品件,求的值,并說明有哪幾種符合題意的生產(chǎn)方案。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1、O2、O3,…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2015秒時,點P的坐標是( )
A. (2014,0) B. (2015,﹣1) C. (2015,1) D. (2016,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A,B,C,D分別表示-3,-1,0,4.請解答下列問題:
(1)在數(shù)軸上描出A,B,C,D四個點;
(2)現(xiàn)在把數(shù)軸的原點取在點B處,其余均不變,那么點A,B,C,D分別表示什么數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線a,b相交.
(1)已知∠1=40°,求∠2,∠3,∠4;
(2)已知∠2+∠4=280°,求各角;
(3)已知∠1∶∠2=2∶7,求各角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=(k為常數(shù)).
(1)k為何值時,該函數(shù)是正比例函數(shù);
(2)k為何值時,正比例函數(shù)過第一、三象限,寫出正比例函數(shù)解析式;
(3)k為何值時,正比例函數(shù)y隨x的增大而減小,寫出正比例函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com