【題目】矩形AOCD繞頂點(diǎn)A(0,5)逆時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到如圖所示的位置時(shí),邊BE交邊CD于M,且ME=2,CM=4.
(1)求AD的長;
(2)求經(jīng)過A、B、D三點(diǎn)的拋物線的解析式;
(3)在直線AM下方,(2)中的拋物線上是否存在點(diǎn)P,使S△PAM =?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.
【答案】(1)AD=7;(2);(3)P點(diǎn)坐標(biāo)為(3,1)、(,)
【解析】試題分析: (1)作BP⊥AD于P,BQ⊥MC于Q,根據(jù)旋轉(zhuǎn)的性質(zhì)得AB=AO=5,BE=OC=AD,∠ABE=90°,利用等角的余角相等得∠ABP=∠MBQ,可證明Rt△ABP∽Rt△MBQ得到,設(shè)BQ=PD=x,AP=y,則AD=x+y,所以BM=x+y-2,利用比例性質(zhì)得到PBMQ=xy,而PB-MQ=DQ-MQ=DM=1,利用完全平方公式和勾股定理得到52-y2-2xy+(x+y-2)2-x2=1,解得x+y=7,則BM=5,BE=BM+ME=7,所以AD=7;
(2)由AB=BM可判斷Rt△ABP≌Rt△MBQ,則BQ=PD=7-AP,MQ=AP,利用勾股定理得到(7-MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,則BQ=4,根據(jù)三角形面積公式和梯形面積公式,利用S陰影部分=S梯形ABQD-S△BQM進(jìn)行計(jì)算即可;然后利用待定系數(shù)法求直線AM的解析式.先確定B(3,1),然后利用待定系數(shù)法求拋物線的解析式;
(3)當(dāng)點(diǎn)P在線段AM的下方的拋物線上時(shí),作PK∥y軸交AM于K,如圖2設(shè)P(x,x2-x+5),則K(x,-x+5),則KP=-x2+x,根據(jù)三角形面積公式得到(-x2+x)7=,解得x1=3,x2=,于是得到此時(shí)P點(diǎn)坐標(biāo)為(3,1)、(,);再求出過點(diǎn)(3,1)與(,)的直線l的解析式為y=-
試題解析:
解:⑴ 如圖1,連接AM,
在矩形AOCD中,∠AOC=∠ADC=90°,AD=OC,CD=AO=5,
∵CM=4,
∴DM=1,
由旋轉(zhuǎn),得∠B=∠AOC =90°,BE=OC,AB=AO=5,
設(shè)BE=OC= AD=x,
在Rt△ADM中,AM2=x2+1,
在Rt△ABM中,AM2=(x-2) 2+25,
∴x2+1=(x-2) 2+25,解得x=7,
∴AD=7.
⑵ 如圖2,過點(diǎn)B作x軸的平行線,交AO于G,交DC于H,
則 ∠AGB=∠BHM =90°,
∴ ∠ABG+∠BAG =90°,
∵ ∠ABE=90°,
∴ ∠ABG+∠MBH =90°,
∴ ∠BAG =∠MBH ,
∵ AB=BM=5,
∴ △AGB≌△BHM(AAS),
∴ BH=AG,MH=BG,
設(shè)MH=BG=n,則DH=n+1,∴BH=AG=n+1,
∵ GH=OC=AD=7,
∴ n+(n+1)=7,
∴ n=3,
∴ AG=4,BG=3,
∵ A(0,5),
∴ 點(diǎn)B的坐標(biāo)為(3,1),
設(shè)經(jīng)過A、B、D三點(diǎn)的拋物線的解析式為y=ax+bx+5,將B(3,1),
D(7,5)代入,得
解得
∴y=x2-x+5.
圖2
⑶ 存在.
設(shè)直線AM的解析式為y=kx+5,將M(7,4)代入,得k=,
∴y=-x+5,
∵點(diǎn)P在線段AD的下方的拋物線上,作PK∥y軸交AM于K,
設(shè)P(x,),則K(x,),
∴KP=﹣=,
∵S△PAM=,
∴7=,
整理得7x2﹣46x+75=0,
解得x1=3,x2=,
此時(shí)P點(diǎn)坐標(biāo)為(3,1)、(,).
點(diǎn)睛: 本題考查了幾何變換綜合題:熟練掌握旋轉(zhuǎn)的性質(zhì)、矩形的性質(zhì)和三角形全等于相似的判定與性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);會(huì)進(jìn)行代數(shù)式的變形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,根據(jù)圖中信息解答下列問題:
(1)關(guān)于x的不等式ax+b>0的解集是 ;
(2)關(guān)于x的不等式mx+n<1的解集是 ;
(3)當(dāng)x滿足 的條件時(shí),y1y2;
(4)當(dāng)x滿足 的條件時(shí),0<y2<y1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC內(nèi)接于⊙O,P是上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),連AP、BP,過點(diǎn)C作CM∥BP交PA的延長線于點(diǎn)M.
(1)填空:∠APC=____ 度,∠BPC=____度;
(2)求證:△ACM≌△BCP;
(3)若PA=1,PB=2,求梯形PBCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店今年1月份的銷售額是2萬元,3月份的銷售額是3.38萬元.
(1)求從1月份到3月份,該商店銷售額平均每月的增長率;
(2)如果該商店4月份銷售額增長率保持不變,銷售額能否達(dá)到4.5萬元,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長交BC的延長線于點(diǎn)D,作OF∥AB交BC于點(diǎn)F,連接EF.
(1)求證:OF⊥CE
(2)求證:EF是⊙O的切線;
(3)若O的半徑為3,∠EAC=60°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,點(diǎn)O是對(duì)角線DB的中點(diǎn),點(diǎn)P是DB所在直線上的一個(gè)動(dòng)點(diǎn),PE⊥BC于E,PF⊥DC于F.
(1)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí)(如圖①),猜測AP與EF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點(diǎn)P在線段DB上(不與點(diǎn)D、O、B重合)時(shí)(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫出證明過程;若不成立,請說明理由;
(3)當(dāng)點(diǎn)P在DB的長延長線上時(shí),請將圖③補(bǔ)充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論;若不成立,請寫出相應(yīng)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種竹制躺椅如圖①所示,其側(cè)面示意圖如圖②③所示,這種躺椅可以通過改變支撐桿CD的位置來調(diào)節(jié)躺椅舒適度.假設(shè)AB所在的直線為地面,已知AE=120 cm,當(dāng)把圖②中的支撐桿CD調(diào)節(jié)至圖③中的C′D的位置時(shí),∠EAB由20°變?yōu)?/span>25°.
(1)你能求出調(diào)節(jié)后該躺椅的枕部E到地面的高度增加了多少嗎?(結(jié)果精確到0.1 cm,參考數(shù)據(jù):sin 20°≈0.342 0,sin 25°≈0.422 6)
(2)已知點(diǎn)O為AE的一個(gè)三等分點(diǎn),根據(jù)人體工程學(xué),當(dāng)點(diǎn)O到地面的距離為26 cm時(shí),人體感覺最舒適.請你求出此時(shí)枕部E到地面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA=,BC=8,點(diǎn)D是AB的中點(diǎn),過點(diǎn)B作CD的垂線,垂足為點(diǎn)E.
(1)求線段CD的長;
(2)求cos∠ABE的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在家用剪刀展開了一個(gè)長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問題:
(1)小明總共剪開了幾條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個(gè)長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補(bǔ)全.
(3)小明說:已知這個(gè)長方體紙盒高為20 cm,底面是一個(gè)正方形,并且這個(gè)長方體紙盒所有棱長的和是880 cm,求這個(gè)長方體紙盒的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com