【題目】正方形ABCD中,點(diǎn)O是對(duì)角線DB的中點(diǎn),點(diǎn)P是DB所在直線上的一個(gè)動(dòng)點(diǎn),PE⊥BC于E,PF⊥DC于F.
(1)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí)(如圖①),猜測(cè)AP與EF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點(diǎn)P在線段DB上(不與點(diǎn)D、O、B重合)時(shí)(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P在DB的長(zhǎng)延長(zhǎng)線上時(shí),請(qǐng)將圖③補(bǔ)充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論;若不成立,請(qǐng)寫出相應(yīng)的結(jié)論.
【答案】(1)AP=EF,AP⊥EF,理由見解析;(2)仍成立,理由見解析;(3)仍成立,理由見解析;
【解析】試題分析:(1)正方形中容易證明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS證明△AMO≌△FOE.(2) (3)按照(1)中的證明方法證明△AMP≌△FPE(SAS),結(jié)論依然成立.
試題解析:
(1)AP=EF,AP⊥EF,理由如下:
連接AC,則AC必過(guò)點(diǎn)O,延長(zhǎng)FO交AB于M;
∵OF⊥CD,OE⊥BC,且四邊形ABCD是正方形,
∴四邊形OECF是正方形,
∴OM=OF=OE=AM,
∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,
∴△AMO≌△FOE(AAS),
∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,
故AP=EF,且AP⊥EF.
(2)題(1)的結(jié)論仍然成立,理由如下:
延長(zhǎng)AP交BC于N,延長(zhǎng)FP交AB于M;
∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,
∴四邊形MBEP是正方形,
∴MP=PE,∠AMP=∠FPE=90°;
又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,
∴AM=PF,
∴△AMP≌△FPE(SAS),
∴AP=EF,∠APM=∠FPN=∠PEF,
∵∠PEF+∠PFE=90°,∠FPN=∠PEF,
∴∠FPN+∠PFE=90°,即AP⊥EF,
故AP=EF,且AP⊥EF.
(3)題(1)(2)的結(jié)論仍然成立;
如右圖,延長(zhǎng)AB交PF于H,證法與(2)完全相同.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“ 六一”兒童節(jié)前夕,蘄黃縣教育局準(zhǔn)備給留守兒童贈(zèng)送一批學(xué)習(xí)用品,先對(duì)浠泉鎮(zhèn)浠泉小學(xué)的留守兒童人數(shù)進(jìn)行抽樣統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)分別為6 名,7 名,8 名,10 名,12 名這五種情形,并將統(tǒng)計(jì)結(jié)果繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)上述統(tǒng)計(jì)圖,解答下列問(wèn)題:
(1)該校有多少個(gè)班級(jí)?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校平均每班有多少名留守兒童?留守兒童人數(shù)的眾數(shù)是多少?
(3)若該鎮(zhèn)所有小學(xué)共有60 個(gè)教學(xué)班,請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)連接OA、OB,求△AOB的面積;
(3)當(dāng)滿足________________時(shí), .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=﹣x﹣2的圖象經(jīng)過(guò)( 。
A. 第一、二、三象限 B. 第一、二、四象限
C. 第一、三,四象限 D. 第二、三、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一座橋長(zhǎng)1200米,一列火車以每秒20米的速度通過(guò)這座橋,火車車身長(zhǎng)300米,則火車從上橋到離開需要_______秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分線AD、BD相交于點(diǎn)D,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算:①a2a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中結(jié)果正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com