【題目】如圖,在中,,,平分,交,,,下列結(jié)論:①;②;③;④,其中正確的結(jié)論有____________. (填序號)

【答案】①②③④

【解析】

只要證明∠AFE=∠AEF,四邊形FGCH是平行四邊形,△FBA≌△FBH即可解決問題.

∵∠FBD=∠ABF,∠FBD+∠BFD90°,∠ABF+∠AEB90°

∴∠BFD=∠AEB

∴∠AFE=∠AEB

AFAE,故①正確

FGBC,FHAC

∴四邊形FGCH是平行四邊形

FHCGFGCH,∠FHD=∠C

∵∠BAD+∠DAC90°,∠DAC+∠C90°

∴∠BAF=∠BHF

BFBF,∠FBA=∠FBH

∴△FBA≌△FBHAAS

FAFH,ABBH,故②正確

AFAE,FHCG

AECG

AGCE,故③正確

BCBHHC,BHBA,CHFG

BCABFG,故④正確

故答案為:①②③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列一段文字:在直角坐標(biāo)系中,已知兩點的坐標(biāo)是Mx1y1),Nx2,y2)),MN兩點之間的距離可以用公式MN計算.解答下列問題:

1)若點P2,4),Q(﹣3,﹣8),求P,Q兩點間的距離;

2)若點A12),B4,﹣2),點O是坐標(biāo)原點,判斷△AOB是什么三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,連接,以對角線為邊按逆時針方向作矩形,使矩形矩形;再連接,以對角線為邊,按逆時針方向作矩形,使矩形矩形, ..按照此規(guī)律作下去,若矩形的面積記作,矩形的面積記作,矩形的面積記作, ... 的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線a≠0)經(jīng)過A﹣10)、B3,0)、C0﹣3)三點,直線l是拋物線的對稱軸.

1)求拋物線的函數(shù)關(guān)系式;

2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);

3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教材中這樣寫道我們把多項式這樣的式子叫做完全平方式如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當(dāng)?shù)捻棧故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法配方法是一種重要的解決數(shù)學(xué)問題的數(shù)學(xué)方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決些與非負(fù)數(shù)有關(guān)的問題或求式子的最大值、最小值等.

1.分解因式解:

解:

2.求式子的最小值,

解:

可知當(dāng)時,有最小值,最小值是,

根據(jù)以上材料用配方法解決下列問題:

在實數(shù)范圍內(nèi)分解因式:;

當(dāng)為何值時,多項式有最小值?并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里有5個小球,分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,﹣,﹣,這些小球除所標(biāo)的數(shù)不同外其余都相同,先從盒子隨機(jī)摸出1個球,記下所標(biāo)的數(shù),再從剩下的球中隨機(jī)摸出1個球,記下所標(biāo)的數(shù).

(1)用畫樹狀圖或列表的方法求兩次摸出的球所標(biāo)的數(shù)之積不大于1的概率.

(2)若以第一次摸出球上的數(shù)字為橫坐標(biāo),第二次摸出球上的數(shù)字為縱坐標(biāo)確定一點,直接寫出該點在雙曲線y=上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】折紙不僅可以幫助我們進(jìn)行證明,還可以幫助我們進(jìn)行計算.小明取了一張正方形紙片,按照如圖所示的方法折疊(如圖①②③):

重新展開后得到如圖所示的正方形ABCD(如圖④),BD、BE、EF為前面折疊的折痕.小亮觀察之后發(fā)現(xiàn)利用這個圖形可以求出45°、22.5°等角的三角函數(shù)值.請你直接寫出tan67.5°=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AGDE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);

若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙M交x軸于B、C兩點,交y軸于A,點M的縱坐標(biāo)為2.B(﹣3,O),C(,O).

(1)求⊙M的半徑;

(2)若CE⊥AB于H,交y軸于F,求證:EH=FH.

(3)在(2)的條件下求AF的長.

查看答案和解析>>

同步練習(xí)冊答案